A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Consensus features of CP-MLR and GA in modeling HIV-1 RT inhibitory activity of 4-benzyl/benzoylpyridin-2-one analogues. | LitMetric

The HIV-1 reverse transcriptase (RT) inhibitory activity of benzyl/benzoylpyridinones is modeled with molecular features identified in combinatorial protocol in multiple linear regression (CP-MLR) and genetic algorithm (GA). Among the features, nDB and LogP are found to be the most influential descriptors to modulate the activity. Although the coefficient of nDB suggested in favor of benzylpyridinones skeleton, the coefficient of LogP suggested the favorability of hydrophilic nature in compounds for better activity. The partial least squares analysis of the descriptors common to CP-MLR and GA has displayed their predictivity over the total descriptors identified in both the approaches. The back-propagation artificial neural networks model from the five most significant common descriptors (nDB, T(O..O), MATS8e, LogP, and BELp4) has explained 93.2% variance in the HIV-1 RT activity of the training set compounds and showed a test set r(2) of 0.89. The results suggest that the descriptors have the ability to identify the patterns in the compounds to predict potential analogues.

Download full-text PDF

Source
http://dx.doi.org/10.3109/14756366.2010.548328DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
8
activity
5
descriptors
5
consensus features
4
features cp-mlr
4
cp-mlr modeling
4
modeling hiv-1
4
hiv-1 inhibitory
4
activity 4-benzyl/benzoylpyridin-2-one
4
4-benzyl/benzoylpyridin-2-one analogues
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!