Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High resolution, system-wide characterizations have demonstrated the capacity to identify genomic regions that undergo genomic aberrations. Such research efforts often aim at associating these regions with disease etiology and outcome. Identifying the corresponding biologic processes that are responsible for disease and its outcome remains challenging. Using novel analytic methods that utilize the structure of biologic networks, we are able to identify the specific networks that are highly significantly, nonrandomly altered by regions of copy number amplification observed in a systems-wide analysis. We demonstrate this method in breast cancer, where the state of a subset of the pathways identified through these regions is shown to be highly associated with disease survival and recurrence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3014942 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0014437 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!