Telomerase and telomeres are important for indefinite replication of stem cells. Recently, telomeres of somatic cells were found to be reprogrammed to elongate in induced pluripotent stem cells (iPSCs). The role of telomeres in developmental pluripotency in vivo of embryonic stem cells (ESCs) or iPSCs, however, has not been directly addressed. We show that ESCs with long telomeres exhibit authentic developmental pluripotency, as evidenced by generation of complete ESC pups as well as germline-competent chimeras, the most stringent tests available in rodents. ESCs with short telomeres show reduced teratoma formation and chimera production, and fail to generate complete ESC pups. Telomere lengths are highly correlated (r > 0.8) with the developmental pluripotency of ESCs. Short telomeres decrease the proliferative rate or capacity of ESCs, alter the expression of genes related to telomere epigenetics, down-regulate genes important for embryogenesis and disrupt germ cell differentiation. Moreover, iPSCs with longer telomeres generate chimeras with higher efficiency than those with short telomeres. Our data show that functional telomeres are essential for the developmental pluripotency of ESCs/iPSCs and suggest that telomere length may provide a valuable marker to evaluate stem cell pluripotency, particularly when the stringent tests are not feasible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203670PMC
http://dx.doi.org/10.1038/cr.2011.16DOI Listing

Publication Analysis

Top Keywords

developmental pluripotency
16
stem cells
12
short telomeres
12
telomeres
9
telomere length
8
complete esc
8
esc pups
8
stringent tests
8
escs short
8
pluripotency
6

Similar Publications

Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.

Sci China Life Sci

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.

Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.

View Article and Find Full Text PDF

The FIRE biosensor illuminates iron regulatory protein activity and cellular iron homeostasis.

Cell Rep Methods

January 2025

Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA. Electronic address:

On Earth, iron is abundant, bioavailable, and crucial for initiating the first catalytic reactions of life from prokaryotes to plants to mammals. Iron-complexed proteins are critical to biological pathways and essential cellular functions. While it is well known that the regulation of iron is necessary for mammalian development, little is known about the timeline of how specific transcripts network and interact in response to cellular iron regulation to shape cell fate, function, and plasticity in the developing embryo and beyond.

View Article and Find Full Text PDF

Human brain organoids (HBOs) derived from pluripotent stem cells hold great potential for disease modeling and high-throughput compound screening, given their structural and functional resemblance to fetal brain tissues. These organoids can mimic early stages of brain development, offering a valuable in vitro model to study both normal and disordered neurodevelopment. However, current methods of generating HBOs are often low throughput and variable in organoid differentiation and involve lengthy, labor-intensive processes, limiting their broader application in both academic and industrial research.

View Article and Find Full Text PDF

Engineering Gene and Protein Switches for Regulation of Lineage-Specifying Transcription Factors.

Biotechnol Bioeng

January 2025

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.

Human pluripotent stem cells (hPSCs) can be differentiated in vitro to an increasing number of mature cell types, presenting significant promise for addressing a wide range of diseases and studying human development. One approach to further enhance stem cell differentiation methods would be to coordinate multiple inducible gene or protein switches to operate simultaneously within the same cell, with minimal cross-interference, to precisely regulate a network of lineage-specifying transcription factors (TFs) to guide cell fate decisions. Therefore, in this study, we designed and tested various mammalian gene and protein switches responsive to clinically safe small-molecule inhibitors of viral proteases.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!