P53 upregulated modulator of apoptosis (PUMA) plays an important role in mediating cell death. However, the role of PUMA in cardiomyocyte death induced by hypoxia/reoxygenation (H/R) and its molecular mechanism still remain enigmatic. Here, we used the in vitro model to elucidate the effects of PUMA on H/R-induced cardiomyocyte apoptosis as well as the underlying mechanisms. We reported that H/R could upregulate the expression of PUMA accompanied by the elevation of cardiomyocyte apoptosis. Interestingly, inhibition of endogenous PUMA expression by PUMA siRNA or p53 inhibitor repressed H/R-induced cardiomyocyte apoptosis. Furthermore, we found H/R stimulated the associations of PUMA apoptosis repressor with caspase recruitment domain (ARC) and consequently attenuated the associations of ARC with caspase 8, resulting in caspase 8 activation. Also, H/R stimulated cytochrome C release and caspase 3 activation. However, these stimulating effects of H/R disappeared upon knockdown of endogenous PUMA. Our data reveal that PUMA participates in H/R-triggered cardiomyocyte apoptosis by interfering with mitochondrial pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SHK.0b013e318211601a | DOI Listing |
PLoS One
January 2025
Department of Pathology, 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China.
Objective: To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression.
Methods: The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins.
Biomaterials
January 2025
Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People's Republic of China; College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650050, People's Republic of China. Electronic address:
Ischemia/reperfusion injury (I/RI) following myocardial infarction, a leading cause of global morbidity and mortality, is characterized by detrimental oxidative stress and inflammation. In response, we proposed an I/RI alleviation strategy using the intravenous injection of spherical selenium nanoparticles (SeNPs) synthesized by a template method. Single-cell sequencing revealed these proposed SeNPs exhibited exceptional antioxidant and anti-inflammatory properties, disrupting the STAT1-ROS cycle, therefore preserving mitochondrial respiration and inhibiting caspase-mediated cardiomyocyte apoptosis.
View Article and Find Full Text PDFPLoS One
January 2025
Precision Laboratory of Vascular Medicine, Shanxi Cardiovascular Hospital Affiliated Shanxi Medical University, Taiyuan, PR China.
Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.
Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.
Drug Des Devel Ther
January 2025
School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, People's Republic of China.
Background: Doxorubicin (DOX) is a chemotherapeutic agent widely used for cancer treatment and has non-negligible cardiotoxicity. Some previous studies have reported that cannabidiol (CBD) has cardioprotective effects. In this study, we evaluated the protective effects of CBD against DOX-induced cardiomyocyte injury, and explored the downstream molecular mechanism.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!