Paracetamol (acetaminophen) is a widely used antipyretic and analgesic drug for mild or moderate pain states. As the primary site of action of paracetamol is still the subject of ongoing discussion, the focus of this study is the investigation of a potential mechanism which might contribute to its beneficial effects in the therapy of pain. Loss of inhibitory synaptic transmission within the dorsal horn of the spinal cord plays a key role in the development of pain following inflammation or nerve injury. Inhibitory postsynaptic transmission in the adult spinal cord involves mainly glycine. In this study we investigated the interaction of paracetamol with strychnine-sensitive α(1)-glycine receptors (α(1)-GlyR). α(1)-GlyR subunits transiently expressed in HEK-293 cells were studied using the whole-cell patch-clamp technique and a piezo-controlled liquid filament fast application system. Paracetamol fails to show a positive allosteric modulatory effect in low nano- to micromolar concentrations and lacks direct activation in micromolar concentrations at the α(1)-GlyR. Consequently, the analgesic actions of paracetamol leading to pain relief appear to be mediated via other mechanisms, but not via activation of spinal glycinergic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000323557DOI Listing

Publication Analysis

Top Keywords

paracetamol fails
8
α1-glycine receptors
8
spinal cord
8
micromolar concentrations
8
paracetamol
6
fails positively
4
positively modulate
4
modulate directly
4
directly activate
4
activate chloride
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!