Objective: Polymerase I and transcript release factor (PTRF) is a protein highly expressed in adipose tissue and is an integral structural component of caveolae. Here, we report on a novel role of PTRF in lipid mobilization.
Research Design And Methods: PTRF expression was examined in different adipose depots of mice during fasting, refeeding, and after administration of catecholamines and insulin. Involvement of PTRF during lipolysis was studied upon PTRF knockdown and overexpression and mutation of PTRF phosphorylation sites in 3T3-L1 adipocytes.
Results: PTRF expression in mouse white adipose tissue (WAT) is regulated by nutritional status, increasing during fasting and decreasing to baseline after refeeding. Expression of PTRF also is hormonally regulated because treatment of mice with insulin leads to a decrease in expression, whereas isoproterenol increases expression in WAT. Manipulation of PTRF levels revealed a role of PTRF in lipolysis. Lentiviral-mediated knockdown of PTRF resulted in a marked attenuation of glycerol release in response to isoproterenol. Conversely, overexpressing PTRF enhanced isoproterenol-stimulated glycerol release. Mass-spectrometric analysis revealed that PTRF is phosphorylated at multiple sites in WAT. Mutation of serine 42, threonine 304, or serine 368 to alanine reduced isoproterenol-stimulated glycerol release in 3T3-L1 adipocytes.
Conclusions: Our study is the first direct demonstration for a novel adipose tissue-specific function of PTRF as a mediator of lipolysis and also shows that phosphorylation of PTRF is required for efficient fat mobilization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3046836 | PMC |
http://dx.doi.org/10.2337/db10-0744 | DOI Listing |
Neuro Endocrinol Lett
November 2024
First Affiliated Hospital of Kunming Medical University, Kunming, China.
Adipose dystrophy, also known as lipodystrophy, is a heterogeneous disease characterized by the complete or partial loss of adipose tissue. In some cases, patients with lipodystrophy may exhibit fat accumulation in other areas of the body, as well as metabolic abnormalities such as insulin resistance, hyperlipidemia, liver disease, and increased metabolic rate. The condition may also be associated with gene mutations, including those in acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2), Berardinelli-Seip Congenital Lipodystrophy 2 (BSCL2), caveolin-1 (CAV1), polymerase I and transcript release factor (PTRF), lamins A (LMNA), zinc metalloproteinase (ZMPSTE24), peroxisome proliferator-activated receptor gamma (PPARG), v-AKT murine thymoma oncogene homolog 2 (AKT2), perilipin 1 (PLIN1), and proteasome subunit, β-type, 8 (PSMB8).
View Article and Find Full Text PDFMuscle Nerve
January 2025
Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.
Biology (Basel)
August 2024
Hubei Key Laboratory of Diabetes and Angiopathy, Medical Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
Diabetic nephropathy (DN) is one of the common complications of diabetes and the main cause of end-stage renal disease (ESRD) in clinical practice. Schisandrin A (Sch A) has multiple pharmacological activities, including inhibiting fibrosis, reducing apoptosis and oxidative stress, and regulating immunity, but its pharmacological mechanism for the treatment of DN is still unclear. In vivo, streptozotocin (STZ) and a high-fat diet were used to induce type 2 diabetic rats, and Sch A was administered for 4 weeks.
View Article and Find Full Text PDFFree Radic Res
August 2024
State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
Ovarian cancer, marked by high rate of recurrence, novel therapeutic strategies are needed to improve patient outcome. One of the potential strategies is inducing ferroptosis in ovarian cancer cells. Ferroptosis is an iron-dependent, lipid peroxidation-driven mode of cell death primarily occurring on the cell membrane.
View Article and Find Full Text PDFCancer Biomark
June 2024
Orthopaedics Department, Fifth Hospital of Wuhan, Wuhan, Hubei, China.
Background: Circular RNAs (circRNAs) perform key regulatory functions in osteosarcoma (OS) tumorigenesis. In this study, we aimed to explore the detailed action mechanisms of circ_0049271 in OS progression.
Methods: Cell colony formation, cell counting kit-8, and transwell assays were performed to assess the proliferation and invasion of OS cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!