We present a detailed comparison of the behavioral and electrophysiological development of seizure activity in mice genetically depleted of synapsin I and synapsin II (SynDKO mice), based on combined video and surface EEG recordings. SynDKO mice develop handling-induced epileptic seizures at the age of 2months. The seizures show a very regular behavioral pattern, where activity is initially dominated by truncal muscle contractions followed by various myoclonic elements. Whereas seizure behavior goes through clearly defined transitions, cortical activity as reflected by EEG recordings shows a more gradual development with respect to the emergence of different EEG components and the frequency of these components. No EEG pattern was seen to define a particular seizure behavior. However, myoclonic activity was characterized by more regular patterns of combined sharp waves and spikes. Where countable, the number of myoclonic jerks was significantly correlated to the number of such EEG complexes. Furthermore, some EEG recordings revealed epileptic regular discharges without clear behavioral seizure correlates. Our findings suggest that seizure behavior in SynDKO mice is not solely determined by cortical activity but rather reflects interplay between cortical activity and activity in other brain regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2011.01.070 | DOI Listing |
Brain Res
April 2011
Institute of Basic Medical Sciences, Department of Physiology, University of Oslo, PO Box 1103 Blindern, N-0317 Oslo, Norway.
We present a detailed comparison of the behavioral and electrophysiological development of seizure activity in mice genetically depleted of synapsin I and synapsin II (SynDKO mice), based on combined video and surface EEG recordings. SynDKO mice develop handling-induced epileptic seizures at the age of 2months. The seizures show a very regular behavioral pattern, where activity is initially dominated by truncal muscle contractions followed by various myoclonic elements.
View Article and Find Full Text PDFJ Neurosci Methods
October 2010
Institute of Basic Medical Sciences, Department of Physiology, University of Oslo, Norway.
We describe a new cable-free, non-telemetric method for synchronized electrophysiological and video recordings of seizure activity in freely moving mice. The electrophysiological recordings were made by a head-mounted 4-channel data-logging device, allowing the mouse to move freely in its cage, and even to be moved from cage to cage under ongoing recording. Seizures were studied in Synapsin I/II double knock-out (SynDKO) mice, a genetically engineered mouse line that shows seizures upon daily handling procedures such as tail lifting during cage changes, much in resemblance to the more studied El mouse.
View Article and Find Full Text PDFEpilepsy Behav
April 2009
Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway.
Inactivation of genes for the synaptic terminal proteins synapsin I and synapsin II leads to development of epileptic seizures in mice (Syn-DKO mice) in which no other behavioral abnormalities or any gross anatomical brain deformities have been reported. In humans, mutated synapsin I is associated with epilepsy. Thus, the Syn-DKO mouse might model human seizure development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!