During normal transcription, the nascent RNA product is released from the DNA template. However, in some cases, the RNA remains bound or can become reattached to the template DNA duplex (for example, through R-loop formation). We have analyzed the effect on transcription elongation of nascent RNA anchoring to the template DNA duplex. Because the RNA polymerase follows a helical path along DNA duplex during transcription, the anchoring would result in wrapping the nascent RNA around the DNA in the region between the anchoring point and the translocating polymerase. This wrapping would cause an unfavorable loss of conformation entropy of the nascent RNA. It consequently would create an apparent force to unwrap the RNA by disrupting either the transcription complex or the anchoring structure. We have estimated that this force would be comparable to those required to melt nucleic acid duplexes or to arrest transcription elongation in single-molecule experiments. We predict that this force would create negative supercoiling in the DNA duplex region between the anchoring point and the transcribing RNA polymerase: this can promote the formation of unusual DNA structures and facilitate RNA invasion into the DNA duplex. Potential biological consequences of these effects are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030168 | PMC |
http://dx.doi.org/10.1016/j.bpj.2010.12.3709 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!