Background: Many in vitro studies have demonstrated that silencing of cancerous genes by siRNAs is a potential therapeutic approach for blocking tumor growth. However, siRNAs are not cell type-selective, cannot specifically target tumor cells, and therefore have limited in vivo application for siRNA-mediated gene therapy.

Results: In this study, we tested a functional RNA nanocomplex which exclusively targets and affects human anaplastic large cell lymphoma (ALCL) by taking advantage of the abnormal expression of CD30, a unique surface biomarker, and the anaplastic lymphoma kinase (ALK) gene in lymphoma cells. The nanocomplexes were formulated by incorporating both ALK siRNA and a RNA-based CD30 aptamer probe onto nano-sized polyethyleneimine-citrate carriers. To minimize potential cytotoxicity, the individual components of the nanocomplexes were used at sub-cytotoxic concentrations. Dynamic light scattering showed that formed nanocomplexes were ~140 nm in diameter and remained stable for more than 24 hours in culture medium. Cell binding assays revealed that CD30 aptamer probes selectively targeted nanocomplexes to ALCL cells, and confocal fluorescence microscopy confirmed intracellular delivery of the nanocomplex. Cell transfection analysis showed that nanocomplexes silenced genes in an ALCL cell type-selective fashion. Moreover, exposure of ALCL cells to nanocomplexes carrying both ALK siRNAs and CD30 RNA aptamers specifically silenced ALK gene expression, leading to growth arrest and apoptosis.

Conclusions: Taken together, our findings indicate that this functional RNA nanocomplex is both tumor cell type-selective and cancer gene-specific for ALCL cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045295PMC
http://dx.doi.org/10.1186/1477-3155-9-2DOI Listing

Publication Analysis

Top Keywords

cell type-selective
12
alcl cells
12
nanocomplex tumor
8
cancer gene-specific
8
anaplastic large
8
large cell
8
cell lymphoma
8
functional rna
8
rna nanocomplex
8
alk gene
8

Similar Publications

A novel interleukin-10 antibody graft to treat inflammatory bowel disease.

Structure

January 2025

Novartis Biomedical Research, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA. Electronic address:

Inflammatory bowel disease (IBD) consists of chronic conditions that severely impact a patient's health and quality of life. Interleukin-10 (IL-10), a potent anti-inflammatory cytokine has strong genetic links to IBD susceptibility and has shown strong efficacy in IBD rodent models, suggesting it has great therapeutic potential. However, when tested in clinical trials for IBD, recombinant human IL-10 (rhIL-10) showed weak and inconsistent efficacy due to its short half-life and pro-inflammatory properties that counteract the anti-inflammatory efficacy.

View Article and Find Full Text PDF

Molecular protocol for genome-wide and cell-type-selective profiling of in vivo small noncoding RNA:target RNA interactions by CIMERA-seq.

STAR Protoc

December 2024

Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Electronic address:

Small noncoding RNAs (sncRNAs) can regulate gene expression by guiding the RNA-induced silencing complex (RISC) to targeted transcripts for translational repression and/or target destabilization. Here, we present a robust benchtop protocol, termed CIMERA-seq, for the unambiguous profiling of sncRNA:target RNA interactions in a genome-wide and cell-type-selective manner. We describe steps for in vivo crosslinking and harvesting tissue, immunoprecipitation and covalent ligation of sncRNAs to target RNAs within the RISC, and sequencing of the resulting chimeric sncRNA:target RNA interactions.

View Article and Find Full Text PDF

Spinal motor neuron (MN) dysfunction is the cause of a number of clinically significant movement disorders. Despite the recent approval of gene therapeutics targeting these MN-related disorders, there are no viral delivery mechanisms that achieve MN-restricted transgene expression. In this study, chromatin accessibility profiling of genetically defined mouse MNs was used to identify candidate cis-regulatory elements (CREs) capable of driving MN-selective gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • * A new technique called irCLIP-RNP, which combines ultraviolet crosslinking with mass spectrometry, helps identify proteins that associate with RNA and RBPs, revealing intricate protein-RNA relationships.
  • * The study also introduced a method called Re-CLIP to explore simultaneous RBP co-binding on specific RNAs, enhancing our understanding of dynamic RNA-protein interactions within cells.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers have discovered specific cis-regulatory elements (CREs) that can achieve spinal motor neuron-specific gene expression while minimizing effects on other nerve cells.
  • * One identified CRE has been effective in both mice and non-human primates, indicating its potential use for developing targeted gene therapies in humans.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!