ChIPseqR: analysis of ChIP-seq experiments.

BMC Bioinformatics

Department of Statistics, Macquarie University, North Ryde, NSW 2109, Australia.

Published: January 2011

Background: The use of high-throughput sequencing in combination with chromatin immunoprecipitation (ChIP-seq) has enabled the study of genome-wide protein binding at high resolution. While the amount of data generated from such experiments is steadily increasing, the methods available for their analysis remain limited. Although several algorithms for the analysis of ChIP-seq data have been published they focus almost exclusively on transcription factor studies and are usually not well suited for the analysis of other types of experiments.

Results: Here we present ChIPseqR, an algorithm for the analysis of nucleosome positioning and histone modification ChIP-seq experiments. The performance of this novel method is studied on short read sequencing data of Arabidopsis thaliana mononucleosomes as well as on simulated data.

Conclusions: ChIPseqR is shown to improve sensitivity and spatial resolution over existing methods while maintaining high specificity. Further analysis of predicted nucleosomes reveals characteristic patterns in nucleosome sequences and placement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045301PMC
http://dx.doi.org/10.1186/1471-2105-12-39DOI Listing

Publication Analysis

Top Keywords

analysis chip-seq
8
chip-seq experiments
8
analysis
5
chipseqr analysis
4
chip-seq
4
experiments background
4
background high-throughput
4
high-throughput sequencing
4
sequencing combination
4
combination chromatin
4

Similar Publications

Background: Although recent progress provides mechanistic insights into diabetic nephropathy (DN), effective treatments remain scarce. DN, characterized by proteinuria and a progressive decline in renal function, primarily arises from podocyte injury, which impairs the glomerular filtration barrier. Wogonoside, a bioactive compound from the traditional Chinese herb Scutellaria baicalensis, has not been explored for its role in DN.

View Article and Find Full Text PDF

Histone lactylation regulates PRKN-Mediated mitophagy to promote M2 Macrophage polarization in bladder cancer.

Int Immunopharmacol

January 2025

Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, PR China. Electronic address:

Background: Bladder cancer (BCa), particularly muscle-invasive bladder cancer (MIBC), is associated with poor prognosis, partly because of immune evasion driven by M2 tumor-associated macrophages (TAMs). Understanding the regulatory mechanisms of M2 macrophage polarization via PRKN-mediated mitophagy and histone lactylation (H3K18la) is crucial for improving treatment strategies.

Methods: A single-cell atlas from 46 human BCa samples was constructed to identify macrophage subpopulations.

View Article and Find Full Text PDF

edgeR is an R/Bioconductor software package for differential analyses of sequencing data in the form of read counts for genes or genomic features. Over the past 15 years, edgeR has been a popular choice for statistical analysis of data from sequencing technologies such as RNA-seq or ChIP-seq. edgeR pioneered the use of the negative binomial distribution to model read count data with replicates and the use of generalized linear models to analyze complex experimental designs.

View Article and Find Full Text PDF

Archived clinical formalin-fixed paraffin-embedded tissue (FFPE) is valuable for the study of tumor epigenetics. Although protocol of chromatin immunoprecipitation coupled with next generation sequencing (NGS) (ChIP-seq) using FFPE samples has been established, removal of interference signals from non-target cell components in the samples is still needed. In this study, the protocol of ChIP-seq with purified cells from FFPE lymphoid tissue of nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI) after fluorescence-activated cell sorting (FACS) was established and optimized.

View Article and Find Full Text PDF

Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation.

Sci Adv

January 2025

Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!