FSI Analysis of a healthy and a stenotic human trachea under impedance-based boundary conditions.

J Biomech Eng

Group of Structural Mechanics and Materials Modeling, Aragón Institute of Engineering Research (I3A), Universidad de Zaragoza, C/María de Luna s/n, E-50018 Zaragoza, Spain.

Published: February 2011

AI Article Synopsis

Article Abstract

In this work, a fluid-solid interaction (FSI) analysis of a healthy and a stenotic human trachea was studied to evaluate flow patterns, wall stresses, and deformations under physiological and pathological conditions. The two analyzed tracheal geometries, which include the first bifurcation after the carina, were obtained from computed tomography images of healthy and diseased patients, respectively. A finite element-based commercial software code was used to perform the simulations. The tracheal wall was modeled as a fiber reinforced hyperelastic solid material in which the anisotropy due to the orientation of the fibers was introduced. Impedance-based pressure waveforms were computed using a method developed for the cardiovascular system, where the resistance of the respiratory system was calculated taking into account the entire bronchial tree, modeled as binary fractal network. Intratracheal flow patterns and tracheal wall deformation were analyzed under different scenarios. The simulations show the possibility of predicting, with FSI computations, flow and wall behavior for healthy and pathological tracheas. The computational modeling procedure presented herein can be a useful tool capable of evaluating quantities that cannot be assessed in vivo, such as wall stresses, pressure drop, and flow patterns, and to derive parameters that could help clinical decisions and improve surgical outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4003130DOI Listing

Publication Analysis

Top Keywords

flow patterns
12
fsi analysis
8
analysis healthy
8
healthy stenotic
8
stenotic human
8
human trachea
8
wall stresses
8
tracheal wall
8
wall
5
healthy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!