Electron beam fabrication of birefringent microcylinders.

ACS Nano

Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1 2628 CJ, Delft, The Netherlands.

Published: February 2011

Numerous biological and biotechnological applications rely on the use of micrometer- and nanometer-scale particles, benefiting tremendously from quantitative control of their physical and chemical properties. Here, we describe the use of electron beam lithography for the design, fabrication, and functionalization of micrometer-scale birefringent quartz cylinders for use in sensing and detection. We demonstrate excellent control of the cylinders' geometry, fabricating cylinders with heights of 0.5-2 μm and diameters of 200-500 nm with high precision while maintaining control of their side-wall angle. The flexible fabrication allows cylinders to be selectively shaped into conical structures or to include centered protrusions for the selective attachment of biomolecules. The latter is facilitated by straightforward functionalization targeted either to a cylinder's face or to the centered protrusion alone. The fabricated quartz cylinders are characterized in an optical torque wrench, permitting correlation of their geometrical properties to measured torques. Lastly, we tether individual DNA molecules to the functionalized cylinders and demonstrate the translational and rotational control required for single-molecule studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn1034108DOI Listing

Publication Analysis

Top Keywords

electron beam
8
quartz cylinders
8
cylinders
5
beam fabrication
4
fabrication birefringent
4
birefringent microcylinders
4
microcylinders numerous
4
numerous biological
4
biological biotechnological
4
biotechnological applications
4

Similar Publications

Advances in analytical scanning transmission electron microscopy (STEM) and in microelectronic mechanical systems (MEMS) based microheaters have enabled in-situ materials' characterization at the nanometer scale at elevated temperature. In addition to resolving the structural information at elevated temperatures, detailed knowledge of the local temperature distribution inside the sample is essential to reveal thermally induced phenomena and processes. Here, we investigate the accuracy of plasmon energy expansion thermometry (PEET) as a method to map the local temperature in a tungsten (W) lamella in a range between room temperature and 700 °C.

View Article and Find Full Text PDF

Statement Of Problem: Infrared radiation heating (IRH) technology has been innovatively applied to the annealing of selective laser melted (SLM) cobalt chromium (Co-Cr) frameworks. However, previous studies have not reported the effects of IRH on the warping deformation and mechanical properties of these frameworks.

Purpose: The purpose of this in vitro study was to investigate the effects of IRH on the warping deformation and mechanical properties of dental SLM Co-Cr alloy and to evaluate its potential applications in dental restorations.

View Article and Find Full Text PDF

For the purpose of assessing image quality and calculating patient X-ray dosage in radiology, computed tomography (CT), fluoroscopy, mammography, and other fields, it is necessary to have prior knowledge of the X-ray energy spectrum. The main components of an X-ray tube are an electron filament, also known as the cathode, and an anode, which is often made of tungsten or rubidium and angled at a certain angle. At the point where the electrons generated by the cathode and the anode make contact, a spectrum of X-rays with energies spanning from zero to the maximum energy value of the released electrons is created.

View Article and Find Full Text PDF

Influence of Photoemission Geometry on Timing and Efficiency in 4D Ultrafast Electron Microscopy.

Chemphyschem

January 2025

University of Minnesota Twin Cities, Chemical Engineering and Materials Science, 421 Washington Avenue SE, 55455, Minneapolis, UNITED STATES OF AMERICA.

Broader adoption of 4D ultrafast electron microscopy (UEM) for the study of chemical, materials, and quantum systems is being driven by development of new instruments as well as continuous improvement and characterization of existing technologies. Perhaps owing to the still-high barrier to entry, the full range of capabilities of laser-driven 4D UEM instruments has yet to be established, particularly when operated at extremely low beam currents (~fA). Accordingly, with an eye on beam stability, we have conducted particle tracing simulations of unconventional off-axis photoemission geometries in a UEM equipped with a thermionic-emission gun.

View Article and Find Full Text PDF

Atom probe tomography (APT) enables three-dimensional chemical mapping with near-atomic scale resolution. However, this method requires precise sample preparation, which is typically achieved using a focused ion beam (FIB) microscope. As the ion beam induces some degree of damage to the sample, it is necessary to apply a protective layer over the region of interest (ROI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!