Puccinia triticina (Pt) is a representative of several cereal-infecting rust fungal pathogens of major economic importance world wide. Upon entry through leaf stomata, these fungi establish intracellular haustoria, crucial feeding structures. We report the first proteome of infection structures from parasitized wheat leaves, enriched for haustoria through filtration and sucrose density centrifugation. 2-D PAGE MS/MS and gel-based LC-MS (GeLC-MS) were used to separate proteins. Generated spectra were compared with a partial proteome predicted from a preliminary Pt genome and generated ESTs, to a comprehensive genome-predicted protein complement from the related wheat stem rust fungus, Puccinia graminis f. sp. tritici (Pgt) and to various plant resources. We identified over 260 fungal proteins, 16 of which matched peptides from Pgt. Based on bioinformatic analyses and/or the presence of a signal peptide, at least 50 proteins were predicted to be secreted. Among those, six have effector protein signatures, some are related and the respective genes of several seem to belong to clusters. Many ribosomal structural proteins, proteins involved in energy, general metabolism and transport were detected. Measuring gene expression over several life cycle stages of ten representative candidates using quantitative RT-PCR, all were shown to be strongly upregulated and four expressed solely upon infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.201000014 | DOI Listing |
Plant Genome
March 2025
Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA.
Leaf rust, caused by Puccinia triticina (Pt), is a serious constraint to wheat production. Developing resistant varieties is the best approach to managing this disease. Wheat leaf rust resistance (Lr) genes have been classified into either all-stage resistance (ASR) or adult-plant resistance (APR).
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China.
Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. tritici.
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW, 2570, Australia.
We analysed the chromosomal structures of two wheat-Thinopyrum intermedium addition lines Z4 and Z5 and resolved the linkage relationship between the leaf rust and stripe rust resistance genes in Z4. Wheat addition lines Z4 and Z5 carrying rust resistance genes from Thinopyrum intermedium (JJJJStSt, 2n = 6x = 42) together with three wheat lines involved in the production of these addition lines were analysed by rust response, 90K SNP genotyping, and molecular cytogenetic analysis. Seedling leaf rust (LR) responses to five diverse pathotypes indicated that the LR resistance gene(s) was located in translocation chromosome T3DS-3AS.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China.
Xinjiang is an important region due to its unique epidemic characteristics of wheat stripe rust disease caused by f. sp. .
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Hungarian Research Network (HUN-REN), Centre for Agricultural Research, Agricultural Institute, Martonvásár, 2462, Hungary.
GBS read coverage analysis identified a Robertsonian chromosome from two Thinopyrum subgenomes in wheat, conferring leaf and stripe rust resistance, drought tolerance, and maintaining yield stability. Agropyron glael (GLAEL), a Thinopyrum intermedium × Th. ponticum hybrid, serves as a valuable genetic resource for wheat improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!