Liver transplantation is an established treatment for acute and chronic liver disease. However, because of the shortage of donor organs, it does not fulfill the needs of all patients. Hepatocyte transplantation is promising as an alternative method for the treatment of end-stage liver disease and as bridging therapy until liver transplantation. Our group has been working on the optimization of matrix-based hepatocyte transplantation. In order to increase cell survival after transplantation, freshly isolated human hepatocytes were seeded onto biodegradable poly(l-lactic acid) (PLLA) polymer scaffolds and were cultured in a flow bioreactor. PLLA discs were seeded with human hepatocytes and exposed to a recirculated medium flow for 6 days. Human hepatocytes formed spheroidal aggregates with a liver-like morphology and active metabolic function. Phase contrast microscopy showed increasing numbers of spheroids of increasing diameter during the culture period. Hematoxylin and eosin histology showed viable and intact hepatocytes inside the spheroids. Immunohistochemistry confirmed sustained hepatocyte function and a preserved hepatocyte-specific cytoskeleton. Albumin, alpha-1-antitrypsin, and urea assays showed continued production during the culture period. Northern blot analysis demonstrated increasing albumin signals. Scanning electron micrographs showed hepatocyte spheroids with relatively smooth undulating surfaces and numerous microvilli. Transmission electron micrographs revealed intact hepatocytes and junctional complexes with coated pits and vesicles inside the spheroids. Therefore, we conclude that primary human hepatocytes, precultured in a flow bioreactor on a PLLA scaffold, reorganize to form morphologically intact liver neotissue, and this might offer an optimized method for hepatocyte transplantation because of the expected reduction of the initial cell loss, the high regenerative potential in vivo, and the preformed functional integrity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/lt.22200 | DOI Listing |
Nature
January 2025
Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA.
Hepatocellular carcinoma (HCC) originates from differentiated hepatocytes undergoing compensatory proliferation in livers damaged by viruses or metabolic-dysfunction-associated steatohepatitis (MASH). While increasing HCC risk, MASH triggers p53-dependent hepatocyte senescence, which we found to parallel hypernutrition-induced DNA breaks. How this tumour-suppressive response is bypassed to license oncogenic mutagenesis and enable HCC evolution was previously unclear.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.
Background: In regions with a high prevalence of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, coinfected patients face a heightened risk of developing hepatocellular carcinoma (HCC), termed HBV/HCV-related HCC (HBCV-HCC). We aimed to investigate the contribution of preexisting chronic hepatitis B (CHB) and subsequent chronic hepatitis C (CHC) to the development of HBCV-HCC.
Methods: We examined HBV's involvement in 93 HBCV-HCC cases by analyzing HBV DNA integration as an indicator of HCC originating from HBV-infected hepatocytes, compared with 164 HBV-HCCs and 56 HCV-HCCs as controls.
Metabolism
December 2024
Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium. Electronic address:
Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent liver disease worldwide, continues to rise. More effective therapeutic strategies are urgently needed. We investigated how targeting two key nuclear receptors involved in hepatic energy metabolism, peroxisome proliferator-activated receptor alpha (PPARα) and estrogen-related receptor alpha (ERRα), ameliorates MASLD.
View Article and Find Full Text PDFFree Radic Biol Med
December 2024
Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. Electronic address:
Background: Posttranslational modifications (PTM) of albumin occur in liver diseases; however, little is known about the source and function of sulfonated albumin, a significant modification of albumin occurring in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the mechanism underlying sulfonated albumin production and its role in the progression of NAFLD-related liver fibrosis.
Methods: Serum samples from healthy controls and patients with NAFLD were used to measure the proportion of sulfonated albumin.
Sci Adv
January 2025
School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in human acute and chronic liver diseases. However, the role and cell-specific contribution of NLRP3 in liver regeneration remains unclear. Here, we found that NLRP3 was highly activated during the early stage of liver regeneration via 70% partial hepatectomy (PHx) mice model and clinical data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!