Objective: Articular cartilage vesicles (ACVs) are extracellular organelles found in normal articular cartilage. While they were initially defined by their ability to generate pathologic calcium crystals in cartilage of osteoarthritis (OA) patients, they can also alter the phenotype of normal chondrocytes through the transfer of RNA and protein. The purpose of this study was to analyze the proteome of ACVs from normal and OA human cartilage.
Methods: ACVs were isolated from cartilage samples from 10 normal controls and 10 OA patients. We identified the ACV proteomes using in-gel trypsin digestion, nanospray liquid chromatography tandem mass spectrometry analysis of tryptic peptides, followed by searching an appropriate subset of the Uniprot database. We further differentiated between normal and OA ACVs by Holm-Sidak analysis for multiple comparison testing.
Results: More than 1,700 proteins were identified in ACVs. Approximately 170 proteins satisfied our stringent criteria of having >1 representative peptide per protein present, and a false discovery rate of ≤5%. These proteins included extracellular matrix components, phospholipid binding proteins, enzymes, and cytoskeletal components, including actin. While few proteins were seen exclusively in normal or OA ACVs, immunoglobulins and complement components were present only in OA ACVs. Compared to normal ACVs, OA ACVs displayed decreases in matrix proteoglycans and increases in transforming growth factor β-induced protein βig-H3, DEL-1, vitronectin, and serine protease HtrA1 (P < 0.01).
Conclusion: These findings lend support to the concept of ACVs as physiologic structures in articular cartilage. Changes in OA ACVs are largely quantitative and reflect an altered matrix and the presence of inflammation, rather than revealing fundamental changes in composition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038242 | PMC |
http://dx.doi.org/10.1002/art.30120 | DOI Listing |
Cureus
December 2024
Department of Health Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, JPN.
Purpose The infrapatellar fat pad (IFP) has the lowest pain threshold among all knee joint components and causes anterior knee pain after knee arthroplasty. It has been reported that selective muscle atrophy of the vastus medialis (VM) and fibrosis of the IFP may develop following knee joint surgery. Ultrasound enables visualization of IFP deformation (A1) from within the joint to the proximal area in response to muscle contraction, and this may be helpful in developing preventive and therapeutic strategies for IFP fibrosis.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Department of Radiation Oncology, Wake Forest University School of Medicine. Winston-Salem, NC, USA. Electronic address:
Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.
View Article and Find Full Text PDFAnn Biomed Eng
January 2025
School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.
Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.
Histochem Cell Biol
January 2025
Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.
Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA).
View Article and Find Full Text PDFSci Rep
January 2025
La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, Australia.
Few studies have explored hip morphology and cartilage composition in female athletes or the impact of asymmetric repetitive loading, such as occurs during softball pitching. The current cross-sectional study assessed bilateral bony hip morphology on computed tomography imaging in collegiate-level softball pitchers ('Pitch1', n = 25) and cross-country runners ('Run', n = 13). Magnetic resonance imaging was used to assess cartilage relaxation times in a second cohort of pitchers ('Pitch2', n = 10) and non-athletic controls ('Con', n = 4).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!