MUTYH glycosylase recognizes the 8-oxoG:A mismatch and is able to excise the adenine base using proofreading mechanisms. Some papers have reported a strong association between cancer development or aggressiveness and MUTYH gene mutations. The aim of this study was to find a possible association between the most frequent MUTYH mutations and melanoma in the context of a case-control pilot study. One hundred ninety-five melanoma patients and 195 healthy controls were matched for sex and age. Clinical and laboratory data were collected in a specific database and all individuals were analyzed for MUTYH mutations by high-resolution melting and direct sequencing techniques. Men and women had significantly different distributions of tumor sites and phototypes. No significant associations were observed between the Y165C, G382D and V479F MUTYH mutations and risk of melanoma development or aggressiveness. Our preliminary findings therefore do not confirm a role for MUTYH gene mutations in the melanoma risk. Further studies are necessary for the assessment of MUTYH not only in melanoma but also other cancer types with the same embryonic origin, in the context of larger arrays studies of genes involved in DNA stability or integrity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5301/jbm.2011.6285 | DOI Listing |
Breast Cancer Res
January 2025
Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, 66451, Monterrey, Nuevo León, México.
Background: Hereditary predisposition to breast and ovarian cancer syndrome (HBOC) is a pathological condition with increased cancer risk, including breast (BC), ovarian cancer (OC), and others. HBOC pathogenesis is caused mainly by germline pathogenic variants (GPV) in BRCA1 and BRCA2 genes. However, other relevant genes are related to this syndrome diagnosis, prognosis, and treatment, including TP53, PALB2, CHEK2, ATM, etc.
View Article and Find Full Text PDFTransl Oncol
January 2025
Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3010, Australia. Electronic address: https://twitter.com/petergeorgeson.
Background: Colorectal cancers (CRCs) from people with biallelic germline likely pathogenic/pathogenic variants in MUTYH or NTHL1 exhibit specific single base substitution (SBS) mutational signatures, namely combined SBS18 and SBS36 (SBS18+SBS36), and SBS30, respectively. The aim was to determine if adenomas from biallelic cases demonstrated these mutational signatures at diagnostic levels.
Methods: Whole-exome sequencing of FFPE tissue and matched blood-derived DNA was performed on 9 adenomas and 15 CRCs from 13 biallelic MUTYH cases, on 7 adenomas and 2 CRCs from 5 biallelic NTHL1 cases and on 27 adenomas and 26 CRCs from 46 non-hereditary (sporadic) participants.
JCO Glob Oncol
January 2025
Servicio de Oncología, Centro Universitario Contra el Cáncer (CUCC), Hospital Universitario "Dr. José Eleuterio González," Universidad Autónoma de Nuevo León, Monterrey, México.
Purpose: Hereditary cancer syndromes (HCS) explain 5%-10% of all cancer cases. Patients with more than one germline pathogenic variant (GPV) result in a clinical syndrome known as multilocus inherited neoplasia allele syndrome (MINAS). In recent years, an increasing number of MINAS cases have been reported.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.
Assessments of breast cancer (BC) risk in carriers of pathogenic variants identified by gene panel testing in different populations are highly in demand worldwide. We performed target sequencing of 78 genes involved in DNA repair in 860 females with BC and 520 age- and family history-matched controls from Central Russia. Among BC patients, 562/860 (65.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!