A single-chain variable fragment antibody against herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D-scFv) has been successfully expressed in the hemolymph of silkworm larvae using a rapid Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system. Variable heavy- and light-chain domains were cloned directly from the cDNA of the hybridoma cell line 2C4 and assembled together with flexible peptide linker (Gly(4)Ser)(3) between two domains. The yield of functional 2,4-D-scFv after purification was 640 μg per 30 ml of hemolymph, which is equivalent to 21.3 mg per liter of hemolymph. The characterization of 2,4-D-scFv using an indirect competitive enzyme-linked immunosorbent assay (icELISA) revealed that it has wide cross-reactivities against 2,4,5-trichlorophenoxyacetic acid (65.5%), 2,4-dichlorophenol (47.9%), and 2,4-dichlorobenzoic acid (26.0%), making it possible to apply 2,4-D-scFv to icELISA for detecting/determining 2,4-D and its metabolites. Judging from its cost and time requirements and its ease of handling, this BmNPV bacmid DNA expression system is more useful for expressing functional scFv than bacterial systems, which frequently require costly and time-consuming refolding.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-011-9168-4DOI Listing

Publication Analysis

Top Keywords

single-chain variable
8
variable fragment
8
fragment antibody
8
24-dichlorophenoxyacetic acid
8
hemolymph silkworm
8
silkworm larvae
8
bmnpv bacmid
8
bacmid dna
8
construction expression
4
expression characterization
4

Similar Publications

A Granzyme B-Cleavable T Cell-Targeted Bispecific Cell Vesicle Connector for Reversing New-Onset Type 1 Diabetes.

J Am Chem Soc

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8 T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection.

View Article and Find Full Text PDF

Development of chimeric antigen receptor T cells targeting cancer-expressing podocalyxin.

Regen Ther

March 2025

Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.

Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy.

View Article and Find Full Text PDF

Crystal Structures of Antigen-Binding Fragment of Anti-Osteocalcin Antibody KTM219.

Int J Mol Sci

January 2025

Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Nagano, Japan.

Osteocalcin is a useful biomarker for bone formation and bone-related diseases. KTM219 is an anti-osteocalcin C-terminal peptide antibody. The single-chain variable region (scFv) and antigen-binding fragment (Fab) of KTM219 are applicable to the Quenchbody (Q-body) immunoassay.

View Article and Find Full Text PDF

In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activity of NK cells and reduce off-target effects. We designed and developed a cis-acting immunocytokine composed of an anti-CD56 single-chain Fragment variable (scFv) and IL15, labeled scFvB1IL15.

View Article and Find Full Text PDF

Zearalenone (ZEN) is a widely distributed mycotoxin with potent estrogenic activity. Detecting ZEN is crucial for assessing its potential health risks. This study developed a highly sensitive non-competitive magnetic phage anti-immunocomplex immunoassay (Nc-MPHAIA) for ZEN detection, utilizing the anti-ZEN single-chain variable fragment (ScFv) and anti-immunocomplex peptide (AIcP), both of which were screened using phage display technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!