Cold injury, blood-brain barrier changes, and leukotriene synthesis: inhibition by phenidone.

J Neurotrauma

Department of Pharmacology, Parke-Davis Pharmaceutical Research Division, Warner Lambert Company, Ann Arbor, Michigan.

Published: May 1991

Transcranial cold injury in rats and guinea pigs induced cerebral extravasation of albumin labeled with Evans blue dye or 125I, respective indicators of the area and amount of blood-brain barrier (BBB) disruption. Radioimmunoassay of brain extracts showed that cold injury induced leukotriene (LT)C4 in rat and guinea pig brains 15 min after injury. In guinea pigs, the LT synthesis inhibitor phenidone (30 mg/kg, i.p.) completely blocked cold-induced LTC4 in brain. Phenidone (30 and 100 mg/kg) also inhibited cerebral tissue accumulation of 125I-albumin and dye in rats and guinea pigs. Phenidone is reported to show antioxidant properties and selective lipoxygenase inhibition of arachidonic acid metabolism compared to cyclooxygenase inhibitors, meclofenamate sodium, and other nonsteroidal anti-inflammatory agents. Since several oxygen and hydroxyl radical scavengers and the cyclooxygenase inhibitor, meclofenamate sodium, did not inhibit protein extravasation, the findings support a role for LT as a mediator of cold-induced changes in BBB permeability in rats and guinea pigs and suggest that the inhibitory effects of phenidone on BBB permeability may be due to inhibition of LT production.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.1990.7.193DOI Listing

Publication Analysis

Top Keywords

guinea pigs
16
cold injury
12
rats guinea
12
blood-brain barrier
8
meclofenamate sodium
8
bbb permeability
8
phenidone
5
guinea
5
injury blood-brain
4
barrier changes
4

Similar Publications

Background: Noise-induced hearing loss (NIHL) is a kind of acquired sensorineural hearing loss and has shown an increasing incidence in recent years. Hence, elucidating the exact pathophysiological mechanisms and proposing effective treatment and prevention methods become the top priority. Though a great number of researches have been carried out on NIHL, few of them were focused on metabolites.

View Article and Find Full Text PDF

Background: Post-inflammatory hyperpigmentation (PIH) is a common cosmetic concern, often leading to significant psychological distress for the patients. With the widespread application of lasers including ablative fractional resurfacing (AFR) with a 10,600 nm CO laser, PIH caused by lasers is becoming increasingly common. But due to the absence of an appropriate animal research model, our understanding of pathophysiological mechanisms and preventive strategies for PIH remains limited.

View Article and Find Full Text PDF

Tinnitus, a widespread condition affecting numerous individuals worldwide, remains a significant challenge due to limited effective therapeutic interventions. Intriguingly, patients using cochlear implants (CIs) have reported significant relief from tinnitus symptoms, although the underlying mechanisms remain unclear and intracochlear implantation risks cochlear damage and hearing loss. This study demonstrates that targeted intracochlear electrical stimulation (ES) in guinea pigs with noise-induced hearing loss reversed tinnitus-related maladaptive plasticity in the cochlear nucleus (CN), characterized by reduced auditory innervation, increased somatosensory innervation, and diminished inhibitory neural networks.

View Article and Find Full Text PDF

The order Rodentia comprises nearly 45% of all extant taxa, currently organized into 31 living families, some 450 genera, and roughly 2010 species (Kelt & Patton, 2020). Considering that rodents began evolving at least 66 million years ago, it is not surprising that they have diversified into five distinct suborders. With the advent of molecular biology, this difference can often be seen at the molecular level as well.

View Article and Find Full Text PDF

Hypothesis: Extracochlear electric-acoustic stimulation (EAS) between the round window membrane and the basal part of the cochlear bone exhibits distinct auditory brainstem response (ABR) characteristics.

Background: The use of EAS in individuals with residual hearing is becoming increasingly common in clinical settings. Ongoing research has explored the characteristics of EAS-induced responses in hearing cochleae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!