Adsorption and decolorization kinetics of methyl orange (MO) by anaerobic sludge in anaerobic sequencing batch reactors were investigated. The anaerobic sludge was found to have a saturated adsorption capacity of 36 ± 1 mg g MLSS(-1) to MO. UV/visible spectrophotometer and high-performance liquid chromatography analytical results indicated that the MO adsorption and decolorization occurred simultaneously in this system. This process at various substrate concentrations could be well simulated using a modified two-stage model with apparent pseudo first-order kinetics. Furthermore, a noncompetitive inhibition kinetic model was also developed to describe the MO decolorization process at high NaCl concentrations, and an inhibition constant of 3.67 g NaCl l(-1) was estimated. This study offers an insight into the adsorption and decolorization processes of azo dyes by anaerobic sludge and provides a better understanding of the anaerobic dye decolorization mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-011-3109-6 | DOI Listing |
Luminescence
December 2024
Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
The present study was performed to synthesize eco-friendly nickel oxide nanoparticles (NiONPs) from the aqueous extract of Fissidens species (FS) and explore its biological activities. Phytochemicals, namely, alkaloids, flavonoids, sterols, tannins, proteins, carbohydrates and phenols, were present in the aqueous extract of Fissidens sp. The UV-Vis and FT-IR analyses of FS-NiONPs revealed a prominent peak at 392 nm, along with functional groups that facilitate the formation of FS-NiONPs.
View Article and Find Full Text PDFMolecules
December 2024
College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China.
Poly-γ-glutamic acid (γ-PGA) is widely used in the field of biomedicine, food, agriculture, and ecological remediation. For the biosynthesis of γ-PGA, the pigments and remaining glutamate are two big problems that impede γ-PGA production by fermentation, and a trade-off between the decolorization rate and γ-PGA recovery rate during the purification process was found. The optimized static activated carbon adsorption conditions for treating the 2-times diluted cell-free supernatant (i.
View Article and Find Full Text PDFChemosphere
December 2024
Department of Environmental Research, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran. Electronic address:
The development of sustainable and efficient electrochemical processes is crucial for addressing global challenges related to water scarcity. In this study, we present a novel 3D core-shell electrocatalyst, Pt@ZnAl-LDH, supported on low-grade charcoal (LGC), which exhibits exceptional electrocatalytic activity for the degradation and decolorization of dye and the electrocatalytic conversion of glycerol to valuable C chemicals. The electrocatalytic degradation of methylene blue dye from water was investigated with a focus on the impact of temperature, pH, and dye concentration.
View Article and Find Full Text PDFLangmuir
November 2024
College of Textiles Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Previous studies have confirmed that MnO removes heavy metal ions and organic pollutants from water with dual effects of adsorption and oxidation coupling, significantly improving the ability to remove impurities. Nanometal oxides have a highly reactive surface but tend to agglomerate during preparation and are challenging to recycle after use. A common method is to combine nano-MnO with FeO to prepare magnetic materials for easy recycling.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia.
The adsorption efficiency of Cr(VI) and anionic textile dyes onto MgAl-layered double hydroxides (LDHs) and MgAl-LDH coated on bio-silica (b-SiO) nanoparticles (MgAl-LDH@SiO) derived from waste rice husks was studied in this work. The material was characterized using field-emission scanning electron microscopy (FE-SEM/EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopic (XPS) techniques. The adsorption capacities of MgAl-LDH@SiO were increased by 12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!