A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Honokiol rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammation. | LitMetric

Purpose: Sepsis has a high mortality rate despite the recent advances in intensive care medicine and antibiotics. Honokiol, a low molecular weight natural product, is known to possess anti-inflammatory activity. Here, we investigate whether honokiol can ameliorate acute lung injury and lethal response in murine models of sepsis.

Methods: Mice were intraperitoneally given vehicle or honokiol 30 min after the induction of sepsis by cecal ligation and puncture (CLP) and endotoxemia by administration of E. coli lipopolysaccharide (LPS).

Results: The productions of serum tumor necrosis factor-α (TNF-α), nitric oxide (NO), and high mobility group box 1 (HMGB 1) were increased in mice during sepsis, which could be reversed by honokiol. Honokiol could also effectively reduce the increased blood lipid peroxidation and nitrotyrosine in septic mice. Honokiol significantly reversed the inductions of inducible NO synthase and nuclear factor-κB (NF-κB) activation in the lungs of mice during sepsis. Honokiol also effectively rescued the lung edema, lung pathological changes, and lethality in septic mice.

Conclusions: These findings suggest that honokiol is capable of suppressing the lethal response and acute lung injury associated with sepsis, and support the potential use of honokiol as a therapeutic agent for the conditions associated with septic shock.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00134-010-2104-1DOI Listing

Publication Analysis

Top Keywords

acute lung
12
lung injury
12
honokiol
10
lethal response
8
mice sepsis
8
honokiol effectively
8
lung
5
sepsis
5
honokiol rescues
4
rescues sepsis-associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!