Aim: To investigate the regulatory effect of microRNA-221 (miR-221) on CDKN1C/p57 expression in colorectal carcinoma (CRC).
Methods: Thirty four CRC and adjacent non-tumorous tissue samples were collected individually. Total RNA and protein were isolatedand from these samples and four human CRC-derived cell lines (including HT-29, Lovo, SW-480 and Caco2). MiR-221 expression was examined using real-time RT-PCR. CRC cells were treated with or without anti-p57-siRNA prior to the addition of pre-miR-221 or anti-miR-221. The mRNA and protein levels of CDKN1C/p57 were examined using semi-quantitative RT-PCR and Western blot, respectively. CRC cell proliferation and apoptosis were assessed using MTT assay and flow cytometry, respectively. The CDKN1C/p57 3'-UTR fragment was amplified using PCR from the genomic DNA of human colon cells and inserted into a luciferase reporter construct. The reporter construct was then transfected into CRC cells together with pre-miR-221 or anti-miR-221, and the luciferase activity in the transfected cells was examined.
Results: MiR-221 expression was significantly up-regulated in 90% of CRC samples compared to that in the adjacent non-tumorous tissue, and the expression level was positively correlated to an advanced TNM stage and local invasion. There was no significant difference in CDKN1C/p57 mRNA expression between CRC and corresponding non-tumorous tissues, whereas CDKN1C/p57 protein expression was markedly decreased in the CRC samples. A significant inverse correlation between miR-221 and CDKN1C/p57 expression was found in CRC cells. Moreover, a miR-221-specific inhibitor significantly increased CDKN1C/p57 protein expression in CRC cells. Anti-miR-221 markedly inhibited CRC cell proliferation and induced apoptosis. This inhibitory effect was abolished by pretreatment with anti-p57-siRNA, suggesting that the inhibition was mediated by CDKN1C/p57. A significant increase of the luciferase activity was observed in CRC cells co-transfected with the luciferase reporter construct and anti-miR-221.
Conclusion: MiR-221 binds to the target site in the 3'-UTR of the CDKN1C/p57 mRNA to inhibit CDKN1C/p57 expression by post-transcriptional gene silencing to promote CRC occurrence and progress, therefore serving as a potential therapeutic target for the prevention and treatment of CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4002764 | PMC |
http://dx.doi.org/10.1038/aps.2010.206 | DOI Listing |
Mol Cell
January 2025
Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia. Electronic address:
Several transcription inhibitors have been developed as cancer therapies. However, they show modest clinical activity, highlighting that our understanding of the cellular response to transcriptional inhibition remains incomplete. Here we report that potent inhibitors of transcription not only impact mRNA output but also markedly impair mRNA transcript localization and nuclear export.
View Article and Find Full Text PDFEur J Surg Oncol
December 2024
Vrije Universiteit Brussel (VUB), Molecular Imaging and Therapy Research Group, MITH, Aartselaar 103, 1090, Brussels, Belgium.
Background: Fluorescence molecular imaging, a potent and non-invasive technique, has become indispensable in medicine for visualizing molecular processes. In surgical oncology, it aids treatment by allowing visualization of tumor cells during fluorescence-guided surgery (FGS). Targeting the urokinase plasminogen activator receptor (uPAR), overexpressed during tissue remodeling and inflammation, holds promise for advancing FGS by specifically highlighting tumors.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
The identification of immune environments and cellular interactions in the colon microenvironment is essential for understanding the mechanisms of chronic inflammatory disease. Despite occurring in the same organ, there is a significant gap in understanding the pathophysiology of ulcerative colitis (UC) and colorectal cancer (CRC). Our study aims to address the distinct immunopathological response of UC and CRC.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Department of Medical Oncology, Institut de Cancérologie de L'Ouest, 44805, Saint Herblain, France.
Immune checkpoint inhibitors (ICI), i.e., anti-PD1/PDL1 and anti-CTLA-4, have reshaped the prognosis of many cancers.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
Microsatellite stable (MSS) colorectal cancer (CRC) is a subtype of CRC that generally exhibits resistance to immunotherapy, particularly immune checkpoint inhibitors such as PD-1 blockade. This study investigates the effects and underlying mechanisms of combining PD-1 blockade with IDO1 inhibition in MSS CRC. Bioinformatics analyses of TCGA-COAD and TCGA-READ cohorts revealed significantly elevated IDO1 expression in CRC tumors, correlating with tumor mutation burden across TCGA datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!