Small non-coding RNAs (sRNAs) are widespread effectors of post-transcriptional gene regulation in bacteria. Currently extensive information exists on the sRNAs of Listeria monocytogenes expressed during growth in extracellular environments. We used deep sequencing of cDNAs obtained from fractioned RNA (<500 nt) isolated from extracellularly growing bacteria and from L. monocytogenes infected macrophages to catalog the sRNA repertoire during intracellular bacterial growth. Here, we report on the discovery of 150 putative regulatory RNAs of which 71 have not been previously described. A total of 29 regulatory RNAs, including small non-coding antisense RNAs, are specifically expressed intracellularly. We validated highly expressed sRNAs by northern blotting and demonstrated by the construction and characterization of isogenic mutants of rli31, rli33-1 and rli50* for intracellular expressed sRNA candidates, that their expression is required for efficient growth of bacteria in macrophages. All three mutants were attenuated when assessed for growth in mouse and insect models of infection. Comparative genomic analysis revealed the presence of lineage specific sRNA candidates and the absence of sRNA loci in genomes of naturally occurring infection-attenuated bacteria, with additional loss in non-pathogenic listerial genomes. Our analyses reveal extensive sRNA expression as an important feature of bacterial regulation during intracellular growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105390 | PMC |
http://dx.doi.org/10.1093/nar/gkr033 | DOI Listing |
ACS Nano
January 2025
Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.
Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
Background: Microbial spoilage in meat impedes the development of sustainable food systems. However, our understanding of the origin of spoilage microbes is limited. Here, we describe a detailed longitudinal study that assesses the microbial dynamics in a meat processing facility using high-throughput culture-dependent and culture-independent approaches to reveal the diversity, dispersal, persistence, and biofilm formation of spoilage-associated microbes.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India.
Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Instrumental Analysis Open Access Centre, Vytautas Magnus University, LT-44404 Kaunas, Lithuania.
A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
Among the various causes of rhomboencephalitis, infection is the most common. However, conventional microbiological methods often yield negative results, making diagnosis challenging and leading to extensive, often inconclusive, diagnostics. Advanced molecular techniques like metagenomic next-generation sequencing (mNGS) offer a powerful and efficient approach to pathogen identification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!