AI Article Synopsis

  • Small non-coding RNAs (sRNAs) play a crucial role in how bacteria regulate gene expression after transcription, particularly in Listeria monocytogenes during its growth inside hosts.
  • Researchers used deep sequencing techniques to identify a total of 150 potential regulatory RNAs, with 71 of them being novel discoveries, and found that 29 of these are specifically expressed when the bacteria are inside host cells.
  • Further experiments showed that certain highly expressed sRNAs are critical for the bacteria's survival and growth in macrophages, and mutations in these sRNAs weakened the bacteria's ability to thrive in infection models.

Article Abstract

Small non-coding RNAs (sRNAs) are widespread effectors of post-transcriptional gene regulation in bacteria. Currently extensive information exists on the sRNAs of Listeria monocytogenes expressed during growth in extracellular environments. We used deep sequencing of cDNAs obtained from fractioned RNA (<500 nt) isolated from extracellularly growing bacteria and from L. monocytogenes infected macrophages to catalog the sRNA repertoire during intracellular bacterial growth. Here, we report on the discovery of 150 putative regulatory RNAs of which 71 have not been previously described. A total of 29 regulatory RNAs, including small non-coding antisense RNAs, are specifically expressed intracellularly. We validated highly expressed sRNAs by northern blotting and demonstrated by the construction and characterization of isogenic mutants of rli31, rli33-1 and rli50* for intracellular expressed sRNA candidates, that their expression is required for efficient growth of bacteria in macrophages. All three mutants were attenuated when assessed for growth in mouse and insect models of infection. Comparative genomic analysis revealed the presence of lineage specific sRNA candidates and the absence of sRNA loci in genomes of naturally occurring infection-attenuated bacteria, with additional loss in non-pathogenic listerial genomes. Our analyses reveal extensive sRNA expression as an important feature of bacterial regulation during intracellular growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105390PMC
http://dx.doi.org/10.1093/nar/gkr033DOI Listing

Publication Analysis

Top Keywords

listeria monocytogenes
8
intracellular srna
4
srna transcriptome
4
transcriptome listeria
4
monocytogenes growth
4
growth macrophages
4
macrophages small
4
small non-coding
4
non-coding rnas
4
rnas srnas
4

Similar Publications

Innovative Applications of Bacteria and Their Derivatives in Targeted Tumor Therapy.

ACS Nano

January 2025

Institute of Nanobiomaterials and Immunology & Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Zhejiang Taizhou 318000, China.

Despite significant progress in cancer treatment, traditional therapies still face considerable challenges, including poor targeting, severe toxic side effects, and the development of resistance. Recent advances in biotechnology have revealed the potential of bacteria and their derivatives as drug delivery systems for tumor therapy by leveraging their biological properties. Engineered bacteria, including , , and , along with their derivatives─outer membrane vesicles (OMVs), bacterial ghosts (BGs), and bacterial spores (BSPs)─can be loaded with a variety of antitumor agents, enabling precise targeting and sustained drug release within the tumor microenvironment (TME).

View Article and Find Full Text PDF

Background: Microbial spoilage in meat impedes the development of sustainable food systems. However, our understanding of the origin of spoilage microbes is limited. Here, we describe a detailed longitudinal study that assesses the microbial dynamics in a meat processing facility using high-throughput culture-dependent and culture-independent approaches to reveal the diversity, dispersal, persistence, and biofilm formation of spoilage-associated microbes.

View Article and Find Full Text PDF

Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen . LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs.

View Article and Find Full Text PDF

A variety of phytochemicals from different plants are collected by bees into bee pollen granules. This research focused on evaluating the effects of lactic acid fermentation and enzymatic hydrolysis on the antibacterial activity of bee pollen and its interaction with antibiotics. There is limited knowledge regarding the interactions between treated bee pollen extracts and antibiotics, and this study contributes to the field by providing new insights into the antibacterial activity of pollen subjected to eight distinct treatment methods.

View Article and Find Full Text PDF

Among the various causes of rhomboencephalitis, infection is the most common. However, conventional microbiological methods often yield negative results, making diagnosis challenging and leading to extensive, often inconclusive, diagnostics. Advanced molecular techniques like metagenomic next-generation sequencing (mNGS) offer a powerful and efficient approach to pathogen identification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!