Silver-Russell syndrome (SRS) is characterised by prenatal and postnatal growth retardation, dysmorphic facial features, and body asymmetry. In 35-60% of SRS cases the paternally methylated imprinting control region (ICR) upstream of the H19 gene (H19-ICR) is hypomethylated, leading to downregulation of IGF2 and bi-allelic expression of H19. H19 and IGF2 are reciprocally imprinted genes on chromosome 11p15. The expression is regulated by the imprinted methylation of the ICR, which modulates the transcription of H19 and IGF2 facilitated by enhancers downstream of H19. A promoter element of IGF2, IGF2P0, is differentially methylated equivalently to the H19-ICR, though in a small number of SRS cases this association is disrupted--that is, hypomethylation affects either H19-ICR or IGF2P0. Three pedigrees associated with hypomethylation of IGF2P0 in the probands are presented here, two with paternally derived deletions, and one with a balanced translocation of inferred paternal origin. They all have a breakpoint within the H19/IGF2 enhancer region. One proband has severe growth retardation, the others have SRS. This is the first report of paternally derived structural chromosomal mutations in 11p15 causing SRS. These cases define a novel aetiology of the growth retardation in SRS, namely, dissociation of IGF2 from its enhancers.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmg.2010.086504DOI Listing

Publication Analysis

Top Keywords

growth retardation
16
srs cases
12
h19/igf2 enhancer
8
enhancer region
8
silver-russell syndrome
8
h19 igf2
8
paternally derived
8
retardation srs
8
srs
6
h19
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!