Role of DC-SIGN and L-SIGN receptors in HIV-1 vertical transmission.

Hum Immunol

Department of Genetics, Federal University of Pernambuco, Cidade Universitária, Recife, PE, Brazil.

Published: April 2011

The innate immune system acts in the first line of host defense against pathogens. One of the mechanisms used involves the early recognition and uptake of microbes by host professional phagocytes, through pattern recognition receptors (PRRs). These PRRs bind to conserved microbial ligands expressed by pathogens and initiate both innate and adaptative immune responses. Some PRRs located on the surface of dendritic cells (DCs) and other cells seem to play an important role in human immunodeficiency virus type 1 (HIV-1) transmission. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin, CD209 (DC-SIGN) and its homolog, DC-SIGN-related (DC-SIGNR or L-SIGN) receptors are PPRs able to bind the HIV-1 gp120 envelope protein and, because alterations in their expression patterns also occur, they might play a role in both horizontal and vertical transmission as well as in disseminating the virus within the host. This review aims to explore the involvement of the DC-SIGN and L-SIGN receptors in HIV-1 transmission from mother to child.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7115691PMC
http://dx.doi.org/10.1016/j.humimm.2011.01.012DOI Listing

Publication Analysis

Top Keywords

l-sign receptors
12
dc-sign l-sign
8
receptors hiv-1
8
vertical transmission
8
play role
8
hiv-1 transmission
8
role dc-sign
4
receptors
4
hiv-1
4
hiv-1 vertical
4

Similar Publications

DC-SIGN (CD209) and L-SIGN (CD209L) are two C-type lectin receptors (CLRs) that facilitate SARS-CoV-2 infections as viral co-receptors. SARS-CoV-2 manipulates both DC-SIGN and L-SIGN for enhanced infection, leading to interest in developing receptor antagonists. Despite their structural similarity (82% sequence identity), they function differently.

View Article and Find Full Text PDF

C-type lectins play a crucial role as pathogen-recognition receptors for the dengue virus, which is responsible for causing both dengue fever (DF) and dengue hemorrhagic fever (DHF). DHF is a serious illness caused by the dengue virus, which exists in four different serotypes: DEN-1, DEN-2, DEN-3, and DEN-4. We conducted a genetic association study, during a significant DEN-2 outbreak in southern Taiwan, to explore how variations in the neck-region length of L-SIGN (also known as CD209L, CD299, or CLEC4M) impact the severity of dengue infection.

View Article and Find Full Text PDF

Despite intense scrutiny throughout the pandemic, development of efficacious drugs against SARS-CoV-2 spread remains hindered. Understanding the underlying mechanisms of viral infection is fundamental for developing novel treatments. While angiotensin converting enzyme 2 (ACE2) is accepted as the key entry receptor of the virus, other infection mechanisms exist.

View Article and Find Full Text PDF

ACE2-Independent Alternative Receptors for SARS-CoV-2.

Viruses

November 2022

Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.

Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and remains a major public health challenge despite the availability of effective vaccines. SARS-CoV-2 enters cells through the binding of its spike receptor-binding domain (RBD) to the human angiotensin-converting enzyme 2 (ACE2) receptor in concert with accessory receptors/molecules that facilitate viral attachment, internalization, and fusion. Although ACE2 plays a critical role in SARS-CoV-2 replication, its expression profiles are not completely associated with infection patterns, immune responses, and clinical manifestations.

View Article and Find Full Text PDF

Glycan shield of the ebolavirus envelope glycoprotein GP.

Commun Biol

August 2022

Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands.

The envelope glycoprotein GP of the ebolaviruses is essential for host cell entry and the primary target of the host antibody response. GP is heavily glycosylated with up to 17 N-linked sites, numerous O-linked glycans in its disordered mucin-like domain (MLD), and three predicted C-linked mannosylation sites. Glycosylation is important for host cell attachment, GP stability and fusion activity, and shielding from neutralization by serum antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!