Prostaglandin (PG) E(2) plays a key role in immune response, tumor progression and metastasis. We previously showed that macrovessel-derived endothelial cells do not produce PGE(2) enzymatically because they do not express the inducible microsomal PGE-synthase-1 (mPGES-1). Nevertheless, differences between macro- and micro-vessel-derived endothelial cells regarding arachidonic acid (AAc) metabolism profile have been reported. The present work was conducted to evaluate the expression of PGE(2)-pathway-related enzymes in human microvascular endothelial cells (HMVEC) in culture and to test the hypothesis that the tumor cell-HMVEC cross talk could increase mPGES-1 expression in HMVEC. We treated HMVEC in culture with human recombinant IL-1β. IL-1β induced PGE(2) release and COX-2 and mPGES-1 expression in terms of mRNA and protein, determined by real-time PCR and immunoblotting, respectively. HMVEC constitutively expressed mPGES-2 and cytosolic PGES (cPGES) and the IL-1β treatment did not modify their expression. PGE(2) synthesized by HMVEC from exogenous AAc was linked to mPGES-1 expression. Immunohistochemistry analysis confirmed mPGES-1 expression in microvessels in vivo. COX-2 and mPGES-1 were also induced in HMVEC by the conditioned medium from two squamous head and neck carcinoma cell lines. Conditioned medium from tumor cell cultures contained several cytokines including the IL-1β and IL-1α. Tumor cell-induced COX-2 and mPGES-1 in HMVEC was strongly inhibited by the IL-1-receptor antagonist, indicating the important implication of IL-1 in this effect. HMVEC could therefore contribute directly to PGE(2) formed in the tumor. Our findings support the concept that mPGES-1 could be a target for therapeutic intervention in patients with cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mvr.2011.01.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!