Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wild-type yellow fever virus (YFV) infections result in a hepatotropic disease which is often fatal, while vaccination with the live-attenuated 17-D strain results in productive infection yet is well-tolerated with few adverse events. Kupffer cells (KCs) are resident liver macrophages that have a significant role in pathogen detection, clearance and immune signaling. Although KCs appear to be an important component of YF disease, their role has been under-studied. This study examined cytokine responses in KCs following infection with either wild-type or vaccine strains of YFV. Results indicate that KCs support replication of both wild-type and vaccine strains, yet wild-type YFV induced a prominent and prolonged pro-inflammatory cytokine response (IL-8, TNF-α and RANTES/CCL5) with little control by a major anti-inflammatory cytokine (IL-10). This response was significantly reduced in vaccine strain infections. These data suggest that a differentially regulated infection in KCs may play a critical role in development of disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virol.2011.01.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!