The generation of superoxide radical (O₂·⁻) in Cyt b₆f of Bryopsis corticulans under high light illumination was studied using electron paramagnetic resonance (EPR) spectroscopy. This could be evidenced by the addition of SOD which specifically reacted with O₂·⁻. The generation of O₂·⁻ was lost in the absence of oxygen and was found to be suppressed in the presence of NaN₃ and be scavenged by extraneous antioxidants such as ascorbate, β-carotene and glutathione which could also scavenged ¹O₂*. These results indicated that O₂·⁻ which produced under high light illumination in Cyt b₆f of B. corticulans might rise from a reaction which ¹O₂* could participated in. Also the photo-protection mechanism to Cyt b₆f complex by antioxidants which might contain in thylakoid was speculated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2010.11.002 | DOI Listing |
Sci Rep
January 2025
Department of Animal Sciences, Central University of Himachal Pradesh, 176206, Dharamsala, India.
Tor putitora is an endangered cyprinid fish constrained to cold water and is also considered an indicator of a healthy aquatic ecosystem. The present study aimed to examine the haplotypic diversity, genetic variation and population structure of T. putitora isolates using COI and Cyt b gene sequences submitted in GenBank.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China. Electronic address:
Background: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are significant burdens on global health. Remimazolam (REM), a novel sedative, has shown potential in its anti-inflammatory effects. However, a lack of evidence currently hinders our ability to determine if REM can improve ALI/ARDS.
View Article and Find Full Text PDFSci Rep
December 2024
Laboratory of Fish Microbiology, Institute of Coastal Studies, Federal University of Para (UFPA), Alameda Leandro Ribeiro s/n, Braganca, 68600-000, Para, Brazil.
We evaluate the evidence of cryptic speciation in Larimus breviceps, a species widely distributed in the western South Atlantic, from the Greater Antilles to Santa Catarina in Brazil. Mitochondrial (COI, Cyt b, and Control Region) and nuclear (IGF1 and Tmo-4C4) sequences were obtained from populations in the western South Atlantic. The analysis revealed two genetically distinct, sympatric lineages with no gene flow, with L.
View Article and Find Full Text PDFJ Plant Physiol
December 2024
Federal Scientific Centre of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
Calcium-dependent protein kinases (CDPKs) are very effective calcium signal decoders due to their unique structure, which mediates substrate-specific [Ca] signalling through phosphorylation. However, Ca-dependence makes it challenging to study CDPKs. This work focused on the effects of the overexpression of native and modified forms of the AtCPK1 gene on the tolerance of tobacco plants to heat and cold.
View Article and Find Full Text PDFInflamm Regen
December 2024
Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
Vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) act together to regulate blood pressure and systemic blood flow by appropriately adjusting blood vessel diameter in response to biochemical or biomechanical stimuli. Ion channels that are expressed in these cells regulate membrane potential and cytosolic Ca concentration ([Ca]) in response to such stimuli. The subsets of these ion channels involved in Ca signaling often form molecular complexes with intracellular molecules via scaffolding proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!