The progressive restriction of differentiation potential from pluripotent embryonic stem cells, via multipotent progenitor cells to terminally differentiated, mature somatic cells, involves step-wise changes in transcription patterns that are tightly controlled by the coordinated action of key transcription factors and changes in epigenetic modifications. While previous studies have demonstrated tissue-specific differences in DNA methylation patterns that might function in lineage restriction, it is unclear at what exact developmental stage these differences arise. Here, we have studied whether terminal, multi-lineage differentiation of C2C12 myoblasts is accompanied by lineage-specific changes in DNA methylation patterns. Using bisulfite sequencing and genome-wide methylated DNA- and chromatin immunoprecipitation-on-chip techniques we show that in these cells, in general, myogenic genes are enriched for RNA polymerase II and hypomethylated, whereas osteogenic genes show lower polymerase occupancy and are hypermethylated. Removal of DNA methylation marks by 5-azacytidine (5AC) treatment alters the myogenic lineage commitment of these cells and induces spontaneous osteogenic and adipogenic differentiation. This is accompanied by upregulation of key lineage-specific transcription factors. We subsequently analyzed genome-wide changes in DNA methylation and polymerase II occupancy during BMP2-induced osteogenesis. Our data indicate that BMP2 is able to induce the transcriptional program underlying osteogenesis without changing the methylation status of the genome. We conclude that DNA methylation primes C2C12 cells for myogenesis and prevents spontaneous osteogenesis, but still permits induction of the osteogenic transcriptional program upon BMP2 stimulation. Based on these results, we propose that cell type-specific DNA methylation patterns are established prior to terminal differentiation of adult progenitor cells. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2011.01.022 | DOI Listing |
J Gerontol A Biol Sci Med Sci
January 2025
Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
Deoxyribonucleic acid (DNA) methylation (DNAm) clocks estimate biological age according to DNA methylation. This study investigated the associations between measures of physical function and physical performance and ten DNAm clocks in the oldest-old in Singapore. The SG90 cohort included a subset of community-dwelling oldest-old from the Singapore Chinese Health Study (SCHS) and Singapore Longitudinal Ageing Study (SLAS).
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFPhysiol Genomics
January 2025
Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann LSL-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Plant epigenomics, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
J Exp Bot
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
Flowering, a pivotal plant lifecycle event, is intricately regulated by environmental and endogenous signals via genetic and epigenetic mechanisms. Photoperiod is a crucial environmental cue that induces flowering by activating integrators through genetic and epigenetic pathways. However, the specific role of DNA methylation, a conserved epigenetic marker, in photoperiodic flowering remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!