Spontaneous development of pseudo-aneurysm of common iliac artery revealing Behçet's disease.

J Mal Vasc

Service de Chirurgie Vasculaire, Hôpital Ibn Sina, MA-10104 Souissi, Rabat, Morocco.

Published: June 2011

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmv.2010.12.004DOI Listing

Publication Analysis

Top Keywords

spontaneous development
4
development pseudo-aneurysm
4
pseudo-aneurysm common
4
common iliac
4
iliac artery
4
artery revealing
4
revealing behçet's
4
behçet's disease
4
spontaneous
1
pseudo-aneurysm
1

Similar Publications

Context: Despite a growing number of studies, the genetic etiology in many cases of ovarian dysgenesis is incompletely understood.

Objectives: This work aimed to study the genetic etiology causing absence of spontaneous pubertal development, hypergonadotropic hypogonadism, and primary amenorrhea in 2 sisters.

Methods: Whole-exome sequencing was performed on DNA extracted from peripheral lymphocytes of 2 Palestinian sisters born to consanguineous parents.

View Article and Find Full Text PDF

Inactivation of antibiotic resistant bacteria by nitrogen-doped carbon quantum dots through spontaneous generation of intracellular and extracellular reactive oxygen species.

Mater Today Bio

February 2025

State Key Laboratory of Ophthalmology, Optometry and Visual Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

The widespread antibiotic resistance has called for alternative antimicrobial agents. Carbon nanomaterials, especially carbon quantum dots (CQDs), may be promising alternatives due to their desirable physicochemical properties and potential antimicrobial activity, but their antimicrobial mechanism remains to be investigated. In this study, nitrogen-doped carbon quantum dots (N-CQDs) were synthesized to inactivate antibiotic-resistant bacteria and treat bacterial keratitis.

View Article and Find Full Text PDF

The aim of this study was to isolate strains with excellent fermentation performance from pickles, thus enhancing the quality of rapid, low-salt fermented mustard leaves (Brassica juncea var. multiceps) through process optimization and inoculation fermentation. A high-throughput screening method for acid-producing strains was developed, significantly improving screening efficiency.

View Article and Find Full Text PDF

Spontaneous intracerebral hemorrhagic stroke (ICH) is a highly aggressive disease, with a high incidence and mortality rate. Iron deposition following ICH leads to oxidative damage and motor dysfunction, significantly impacting the overall quality of life for those affected. Here, a polyphenolic nanomedicine, catechin-based polyphenol nanoparticles surface-modified by thiol-terminated poly(ethylene glycol) (CNPs@PEG), was developed through the oxidative polymerization and self-assembly of catechin, a natural compound in tea.

View Article and Find Full Text PDF

Azygos Vein Stenosis in Frontotemporal Dementia Sagging Brain Syndrome.

AJNR Am J Neuroradiol

January 2025

Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology (J.D.S., Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.

Background And Purpose: Symptoms indistinguishable from behavioral-variant frontotemporal dementia (bvFTD) can develop in patients with spontaneous intracranial hypotension associated with severe brain sagging. An underlying spinal CSF leak can be identified in only a minority of these patients and the success rate of nondirected treatments, such as epidural blood patching and dural reduction surgery, is low. The disability associated with bvFTD sagging brain syndrome is high and, because of the importance of the venous system in the pathophysiology of CSF leaks in general, we have investigated the systemic venous circulation in those patients with recalcitrant symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!