Alcohol-induced proinflammatory central immune signaling has been implicated in the chronic neurotoxic actions of alcohol, although little work has examined if these non-neuronal actions contribute to the acute behavioral responses elicited by alcohol administration. The present study examined if acute alcohol-induced sedation (loss of righting reflex, sleep time test) and motor impairment (rotarod test) were influenced by acute alcohol-induced microglial-dependent central immune signaling. Inhibition of acute alcohol-induced central immune signaling, through the reduction of proinflammatory microglial activation with minocycline, or by blocking interleukin-1 (IL-1) receptor signaling using IL-1 receptor antagonist (IL-1ra), reduced acute alcohol-induced sedation in mice. Mice treated with IL-1ra recovered faster from acute alcohol-induced motor impairment than control animals. However, minocycline led to greater motor impairment induced by alcohol, implicating different mechanisms in alcohol-induced sedation and motor impairment. At a cellular level, IκBα protein levels in mixed hippocampal cells responded rapidly to alcohol in a time-dependent manner, and both minocycline and IL-1ra attenuated the elevated levels of IκBα protein by alcohol. Collectively these data suggest that alcohol is capable of rapid modification of proinflammatory immune signaling in the brain and this contributes significantly to the pharmacology of alcohol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2011.01.012DOI Listing

Publication Analysis

Top Keywords

acute alcohol-induced
24
motor impairment
20
alcohol-induced sedation
16
immune signaling
16
central immune
12
alcohol-induced
8
il-1 receptor
8
iκbα protein
8
acute
7
alcohol
7

Similar Publications

Acute alcoholic liver injury (AALI) remains a significant global health concern, primarily driven by oxidative stress. This study investigated the protective mechanisms of BC99 against alcohol-induced oxidative stress using a dual model in rats and Caenorhabditis elegans. In rats, excessive alcohol was predominantly metabolized via the CYP2E1 pathway, leading to severe oxidative stress.

View Article and Find Full Text PDF

Potential Mechanisms and Effects of Dai Bai Jie Ethanol Extract in Preventing Acute Alcoholic Liver Injury.

Curr Issues Mol Biol

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.

This study investigated the protective effect of Dai Bai Jie (DBJ) extract against acute alcoholic liver injury (AALI) and elucidated its potential mechanism. The total saponin level in the DBJ extracts was measured using vanillin-chloroform acid colorimetry. To observe the preventive and protective effects of DBJ on AML-12 cells in an ethanol environment, the effective components of DBJ were identified.

View Article and Find Full Text PDF

Acer tegmeutosum Maxim extract alleviates acute alcohol-induced liver disease and regulates gut microbiota dysbiosis in mice.

Arch Biochem Biophys

January 2025

College of Agricultural, Yanbian University, Yanji, Jilin 133002, China; Food Research Center, Yanbian University, Yanji, Jilin 133002, China. Electronic address:

Acer tegmentosum Maxim (AT) has a variety of pharmacological activities, however, the effects of AT on liver injury and gut microbiota in alcoholic liver disease (ALD) mice is still unclear. This study aimed to evaluate the preventive effect of AT extract on acute alcoholic liver disease. Six-week-old male C57BL/6J mice were randomly divided into 6 groups.

View Article and Find Full Text PDF

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS, Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

Article Synopsis
  • COVID-19, caused by SARS-CoV-2, poses serious global health risks, including the potential for secondary liver injury related to metabolic enzyme changes.
  • This study explores how prior infection with SARS-CoV-2 affects alcohol-induced liver damage, using transgenic mice that express human ACE2.
  • Results showed that infected mice experienced worsened liver injury after alcohol consumption, with alterations in metabolic enzymes and increased levels of a toxic alcohol byproduct, indicating a complex interaction between COVID-19 and alcohol effects on the liver.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!