Spinal motor actions of the μ-opioid receptor agonist DAMGO in the cat.

Neurosci Res

Institute of Physiology, University of Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.

Published: May 2011

For further evaluation of opioidergic spinal motor functions the action of the μ-opioid receptor agonist DAMGO was tested on transmission in different non-nociceptive and nociceptive spinal reflex pathways from flexor reflex afferents (FRA), and in non-FRA reflex pathways in spinal cats. The action of DAMGO was complex, not following a simple pattern with selective depression of nociceptive pathways compared to non-nociceptive ones. Monosynaptic reflexes of the flexor posterior biceps semitendinosus (PBSt) and transmission in nociceptive as well as non-nociceptive excitatory FRA pathways to PBSt were depressed, while the specific excitatory nociceptive non-FRA pathway from the central foot pad to foot extensors was mainly not depressed but rather facilitated by DAMGO. DAMGO caused a facilitation of monosynaptic reflexes to the extensor gastrocnemius soleus (GS) and partly a reversal of inhibitory to excitatory conditioning effects from cutaneous afferents to GS. FRA interneurones could show either an increase or a cessation of their spontaneous activity, but responsiveness to nociceptive and non-nociceptive afferent activation was blocked by DAMGO. The main DAMGO action is generated via interneuronal systems rather than on motoneurones themselves. The results indicate that opioidergic spinal functions are extensively involved in spinal motor control exceeding a mere suppression of nociceptive motor withdrawal reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2011.01.011DOI Listing

Publication Analysis

Top Keywords

spinal motor
12
μ-opioid receptor
8
receptor agonist
8
agonist damgo
8
opioidergic spinal
8
reflex pathways
8
afferents fra
8
monosynaptic reflexes
8
damgo
7
spinal
6

Similar Publications

An optogenetic mouse model of hindlimb spasticity after spinal cord injury.

Exp Neurol

January 2025

Brain and Mind Research Institute, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada. Electronic address:

Spasticity is a common comorbidity of spinal cord injury (SCI), disrupting motor function and resulting in significant discomfort. While elements of post-SCI spasticity can be assessed using pre-clinical SCI models, the robust measurement of spasticity severity can be difficult due to its periodic and spontaneous appearance. Electrical stimulation of sensory afferents can elicit spasticity-associated motor responses, such as spasms; however, placing surface electrodes on the hindlimbs of awake animals can induce stress or encumbrance that could influence the expression of behaviour.

View Article and Find Full Text PDF

Resting-State EEG Oscillations in Amyotrophic Lateral Sclerosis (ALS): Toward Mechanistic Insights and Clinical Markers.

J Clin Med

January 2025

Faculty of Physical Culture and Health, Institute of Physical Culture Sciences, University of Szczecin, Al. Piastów 40B blok 6, 71-065 Szczecin, Poland.

Amyotrophic lateral sclerosis (ALS) is a complex, progressive neurodegenerative disorder characterized by the degeneration of motor neurons in the brain, brainstem, and spinal cord. Several neuroimaging techniques can help reveal the pathophysiology of ALS. One of these is the electroencephalogram (EEG), a noninvasive and relatively inexpensive tool for examining electrical activity of the brain with excellent temporal precision.

View Article and Find Full Text PDF

: Surgery for adolescent idiopathic deformities is often aimed at improving aesthetic appearance, striving for the best possible correction. However, severe and rigid scoliotic curves not only present aesthetic issues but can also compromise cardiopulmonary health and cause early neurological impairment due to spinal cord compression, posing significant risks of morbidity and mortality if untreated. Conservative treatments are ineffective for severe curves, defined by scoliotic angles over 70° and flexibility below 30% on lateral bending X-rays.

View Article and Find Full Text PDF

Spinal cord injury (SCI) can lead to devastating dysfunctions and complications, significantly impacting patients' quality of life and aggravating the burden of disease. Since the main pathological mechanism of SCI is the disruption of neuronal circuits, the primary therapeutic strategy for SCI involves reconstructing and activating circuits to restore neural signal transmission. Repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation technique, can modulate the function or state of the nervous system by pulsed magnetic fields.

View Article and Find Full Text PDF

IL-18 Blockage Reduces Neuroinflammation and Promotes Functional Recovery in a Mouse Model of Spinal Cord Injury.

Biomolecules

December 2024

Department of Anatomy and Developmental Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Shimane, Japan.

The prognosis of spinal cord injury (SCI) is closely linked to secondary injury processes, predominantly driven by neuroinflammation. Interleukin-18 (IL-18) plays a pivotal role in this inflammatory response. In previous work, we developed an anti-IL-18 antibody capable of neutralizing the active form of IL-18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!