To see whether age-related changes in bone could predict subsequent lifespan, we measured multiple aspects of femur size and shape at 4, 15, and 24 months of age in genetically heterogeneous mice. Mice whose cortical bone became thicker from 4 to 15 months, associated with preservation of the endosteal perimeter, survived longer than mice whose endosteal cavity expanded, at the expense of cortical bone, over this age range. Femur size at age 4 months was also associated with a difference in life expectancy: mice with larger bones (measured by length, cortical thickness, or periosteal perimeter) had shorter lifespans. Femur length, midlife change in cortical bone thickness, and midlife values of CD8 T memory cells each added significant power for longevity prediction. Mice in the upper half of the population for each of these three endpoints lived, on average, 103 days (12%) longer than mice with the opposite characteristics. Thus, measures of young adult bone dimensions, changes as a result of bone remodeling in middle age, and immunological maturation provide partially independent indices of aging processes that together help to determine lifespan in genetically heterogeneous mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094489 | PMC |
http://dx.doi.org/10.1111/j.1474-9726.2011.00671.x | DOI Listing |
J Cell Sci
January 2025
Institute of Molecular Biosciences, University of Graz, Graz, Austria.
White adipose tissue (WAT) comprises a plethora of cell types beyond adipocytes forming a regulatory network that ensures systemic energy homeostasis. Intertissue communication is facilitated by metabolites and signaling molecules that are spread by vasculature and nerves. Previous works indicated that WAT responds to environmental cues by adapting the abundance of these "communication routes", however, high intra-tissue heterogeneity questions the informative value of bulk or single cell analyses and underscores the necessity of whole-mount imaging.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China.
Objective: Diabetic neuropathy (DN), a common and debilitating complication of diabetes, significantly impairs the quality of life of affected individuals. While multiple studies have indicated changes in the expression of specific matrix metalloproteinases (MMPs) in patients with DN, and basic research has reported the impact of MMPs on DN, there is a lack of systematic research and the causal relationship remains unclear. The objective of this research is to investigate the casual relationship between MMPs and DN through two-sample Mendelian randomization (MR).
View Article and Find Full Text PDFFront Immunol
January 2025
Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China.
Background: The rising incidence of breast cancer and its heterogeneity necessitate precise tools for predicting patient prognosis and tailoring personalized treatments. Epigenetic changes play a critical role in breast cancer progression and therapy responses, providing a foundation for prognostic model development.
Methods: We developed the Machine Learning-derived Epigenetic Model (MLEM) to identify prognostic epigenetic gene patterns in breast cancer.
Front Immunol
January 2025
Department of Dermatology, Michigan Medicine, Ann Arbor, MI, United States.
J Transl Autoimmun
June 2025
Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
Autoimmune rheumatic diseases (ARDs) are a heterogeneous group of conditions characterized by excessive and misdirected immune responses against the body's own musculoskeletal tissues. Their exact aetiology remains unclear, with genetic, demographic, behavioural and environmental factors implicated in disease onset. One prominent hypothesis for the initial breach of immune tolerance (leading to autoimmunity) is molecular mimicry, which describes structural or sequence similarities between human and microbial proteins (mimotopes).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!