A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fungi in freshwaters: ecology, physiology and biochemical potential. | LitMetric

Fungi in freshwaters: ecology, physiology and biochemical potential.

FEMS Microbiol Rev

Faculty I of Natural Science - Biological Science, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.

Published: July 2011

Research on freshwater fungi has concentrated on their role in plant litter decomposition in streams. Higher fungi dominate over bacteria in terms of biomass, production and enzymatic substrate degradation. Microscopy-based studies suggest the prevalence of aquatic hyphomycetes, characterized by tetraradiate or sigmoid spores. Molecular studies have consistently demonstrated the presence of other fungal groups, whose contributions to decomposition are largely unknown. Molecular methods will allow quantification of these and other microorganisms. The ability of aquatic hyphomycetes to withstand or mitigate anthropogenic stresses is becoming increasingly important. Metal avoidance and tolerance in freshwater fungi implicate a sophisticated network of mechanisms involving external and intracellular detoxification. Examining adaptive responses under metal stress will unravel the dynamics of biochemical processes and their ecological consequences. Freshwater fungi can metabolize organic xenobiotics. For many such compounds, terrestrial fungal activity is characterized by cometabolic biotransformations involving initial attack by intracellular and extracellular oxidative enzymes, further metabolization of the primary oxidation products via conjugate formation and a considerable versatility as to the range of metabolized pollutants. The same capabilities occur in freshwater fungi. This suggests a largely ignored role of these organisms in attenuating pollutant loads in freshwaters and their potential use in environmental biotechnology.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6976.2011.00266.xDOI Listing

Publication Analysis

Top Keywords

freshwater fungi
16
aquatic hyphomycetes
8
fungi
6
fungi freshwaters
4
freshwaters ecology
4
ecology physiology
4
physiology biochemical
4
biochemical potential
4
freshwater
4
potential freshwater
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!