Phyllanthus tenellus is widely used for its antiviral, analgesic and hepatoprotective properties. Although the production of several chemical classes of secondary metabolites is influenced by UV radiation, particularly phenolic compounds, we also know that UV radiation can result in anatomical and developmental damage. However, the morphological, anatomical and phytochemical changes in response to UV-A exposure are generally understudied in the Phyllanthaceae. Therefore, we evaluated the effects of UV-A radiation on plant development and leaf anatomy, as well as the production of secondary metabolites and the contents of carotenoids and chlorophylls a and b, in P. tenellus. To accomplish this, in vitro cultures of P. tenellus were maintained for 60 days under white light (WL) and WL plus UV-A radiation. Results showed different phenotypic responses under additional UV-A, such as high phenolic metabolite production, increasing dimensions of abaxial epidermis and thickness of palisade parenchyma. Compared to plants cultured under WL, UV-A radiation caused damage to plant morphogenesis, including a reduced number of branches and shoots, consequently reducing the rate of proliferation. On the other hand, geraniin, ellagic acid and carotenoid contents increased after UV-A exposure, indicating that this light source is an important resource for inducing phenolic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1751-1097.2011.00905.xDOI Listing

Publication Analysis

Top Keywords

uv-a radiation
12
metabolite production
8
phyllanthus tenellus
8
secondary metabolites
8
phenolic compounds
8
uv-a exposure
8
uv-a
7
radiation
5
effects supplemental
4
supplemental uv-a
4

Similar Publications

Characterization of the second type of tubuliform spidroin (TuSp1 variant 2) elucidates the essential role of cysteine within the repetitive domain in liquid-liquid phase separation-mediated silk formation and the mechanical properties of silk fibers.

Int J Biol Macromol

January 2025

Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China. Electronic address:

Orb-weaver spiders utilize morphologically differentiated abdominal glands to produce up to seven types of silks throughout their life cycles. Tubuliform silk is unique as it serves to protect developing embryos and hatchlings. However, our current understanding of the relationship between structure and function of tubuliform silk protein remains limited.

View Article and Find Full Text PDF

UV-A exposure is a major risk factor for melanoma, nonmelanoma skin cancer, photoaging, and exacerbation of photodermatoses. Since people spend considerable time in cars daily, inadequate UV-A attenuation by car windows can significantly contribute to the onset or exacerbation of these skin diseases. Given recent market trends in the automobile industry and known impact of car windows on cumulative lifelong UV damage to the skin, there is a need to comparatively evaluate UV transmission across windows in electric vehicles (EV), hybrid vehicles (HV), and gas vehicles (GV) as well as variability based on year of manufacture and mileage to inform car manufacturers and consumers of the potential for UV exposure to the skin based on vehicle.

View Article and Find Full Text PDF

Ultraviolet-Shielded Transparent Wood with Improved Interface for Insulating Windows.

ACS Appl Mater Interfaces

January 2025

MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.

Recently, transparent wood (TW) has been considered for many energy-efficient building products, such as windows and decorations. However, the existing TW still faces issues with size and thickness, as well as problems with functional fillers affecting the optical and mechanical properties of TW, which limits its wide application in the window products. In this study, a wood composite material (WCM) with good optical, mechanical, and thermal insulation and UV-shielding properties was prepared by using delignified wood (DW), methyl methacrylate (MMA), and 4-vinylphenylboric acid (VPBA).

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) has emerged as a novel non-thermal process technology for inactivating microorganisms due to its low cost, safety, and efficiency. This study aimed to investigate the antimicrobial effect of VK-mediated PDI against Pseudomonas fluorescens (P. fluorescens) and to assess its impact on the quality of the blunt bream contaminated with P.

View Article and Find Full Text PDF

Whole utilization of okara has important economic value, but there are two technical barriers: coarse mouthfeel caused by insoluble dietary fiber (IDF) and undesirable "beany" off-odors. UV-A irradiation and/or microbial fermentation were used to modify okara. The results indicated that single and combined treatments increased the soluble dietary fiber (SDF) content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!