We have developed a robust array-in-well test platform based on an oligonucleotide array, combining advantages of simple instrumentation and new upconverting phosphor reporter technology. Upconverting inorganic lanthanide phosphors have a unique property of photoluminescence emission at visible wavelengths under near-infrared excitation. No autofluorescence is produced from the sample or support material, enabling a highly sensitive assay. In this study, the assay is performed in standard 96-well microtiter plates, making the technique easily adaptable to high-throughput analysis. The oligonucleotide array-in-well assay is employed to detect a selection of ten common adenovirus genotypes causing human infections. The study provides a demonstration of the advantages and potential of the upconverting phosphor-based reporter technology in multianalyte assays and anti-Stokes photoluminescence detection with an anti-Stokes photoluminescence imaging device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac103155f | DOI Listing |
Clin Microbiol Infect
June 2013
Department of Virology, University of Turku, Turku, Finland.
A robust oligonucleotide array-in-well hybridization assay using novel up-converting phosphor reporter technology was applied for genotyping clinically relevant human adenovirus types. A total of 231 adenovirus-positive respiratory, ocular swab, stool and other specimens from 219 patients collected between April 2010 and April 2011 were included in the study. After a real-time PCR amplification targeting the adenovirus hexon gene, the array-in-well assay identified the presence of B03 (n = 122; 57.
View Article and Find Full Text PDFAnal Chem
February 2011
Department of Biotechnology, University of Turku, Turku, Finland.
We have developed a robust array-in-well test platform based on an oligonucleotide array, combining advantages of simple instrumentation and new upconverting phosphor reporter technology. Upconverting inorganic lanthanide phosphors have a unique property of photoluminescence emission at visible wavelengths under near-infrared excitation. No autofluorescence is produced from the sample or support material, enabling a highly sensitive assay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!