A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Real-time monitoring of plasmonic evolution in thick Ag:SiO(2) films: nanocomposite optical tuning. | LitMetric

Real-time monitoring of plasmonic evolution in thick Ag:SiO(2) films: nanocomposite optical tuning.

ACS Appl Mater Interfaces

Division of Natural Sciences, New College of Florida, Sarasota, Florida 34243, United States.

Published: February 2011

An in situ optical microspectroscopy study of the surface plasmon resonance (SPR) evolution of Ag nanoparticles (NPs) embedded in thick SiO(2) films deposited on soda-lime glass has been conducted during thermal processing in air. The temperature and time dependences of the SPR were analyzed in the context of Mie extinction and crystal growth theories and were discussed along with consideration of oxidation processes and film/substrate physicochemical interactions. At relatively high temperatures, Ag NPs were indicated to grow first through a diffusion-based process and subsequently via Ostwald ripening. At lower temperatures, an initial decrease in Ag particle size was indicated due to oxidation, followed by NP diffusion-based growth. The growth and oxidation stages appeared temperature and time dependent, allowing for the tuning of material properties. The product of Ag NP oxidation was revealed by photoluminescence spectroscopy performed ex situ as single Ag(+) ions. The oxidative effect of the air atmosphere on Ag NPs was shown to be ultimately circumvented by the thick nanocomposite film. The phenomenon was explained on the basis of the displacement of the Ag/Ag(+) redox equilibrium toward Ag NP stability after ion migration toward the substrate being self-constrained. In addition, the current spectroscopic approach has been proposed for estimating the activation energy for silver diffusion in the SiO(2) matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am101021aDOI Listing

Publication Analysis

Top Keywords

temperature time
8
real-time monitoring
4
monitoring plasmonic
4
plasmonic evolution
4
evolution thick
4
thick agsio2
4
agsio2 films
4
films nanocomposite
4
nanocomposite optical
4
optical tuning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!