Design, synthesis and biological evaluation of novel inhibitors of Trypanosoma brucei pteridine reductase 1.

ChemMedChem

Drug Discovery Unit, Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, Scotland, DD1 5EH, UK.

Published: February 2011

Genetic studies indicate that the enzyme pteridine reductase 1 (PTR1) is essential for the survival of the protozoan parasite Trypanosoma brucei. Herein, we describe the development and optimisation of a novel series of PTR1 inhibitors, based on benzo[d]imidazol-2-amine derivatives. Data are reported on 33 compounds. This series was initially discovered by a virtual screening campaign (J. Med. Chem., 2009, 52, 4454). The inhibitors adopted an alternative binding mode to those of the natural ligands, biopterin and dihydrobiopterin, and classical inhibitors, such as methotrexate. Using both rational medicinal chemistry and structure-based approaches, we were able to derive compounds with potent activity against T. brucei PTR1 (K(i)(app)=7 nM), which had high selectivity over both human and T. brucei dihydrofolate reductase. Unfortunately, these compounds displayed weak activity against the parasites. Kinetic studies and analysis indicate that the main reason for the lack of cell potency is due to the compounds having insufficient potency against the enzyme, which can be seen from the low K(m) to K(i) ratio (K(m)=25 nM and K(i)=2.3 nM, respectively).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047710PMC
http://dx.doi.org/10.1002/cmdc.201000450DOI Listing

Publication Analysis

Top Keywords

trypanosoma brucei
8
design synthesis
4
synthesis biological
4
biological evaluation
4
evaluation novel
4
inhibitors
4
novel inhibitors
4
inhibitors trypanosoma
4
brucei pteridine
4
pteridine reductase
4

Similar Publications

Microtubule-severing enzymes play essential roles in regulating diverse cellular processes, including mitosis and cytokinesis, by modulating microtubule dynamics. In the early branching protozoan parasite , microtubule-severing enzymes are involved in cytokinesis and flagellum length control during different life cycle stages, but none of them have been found to regulate mitosis in any life cycle form. Here, we report the biochemical and functional characterization of the microtubule-severing enzyme spastin in the procyclic form of .

View Article and Find Full Text PDF

A murine model of induced myocarditis and cardiac dysfunction.

Microbiol Spectr

January 2025

Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.

Unlabelled: is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of infection. Despite the importance of as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of associated cardiomyopathy.

View Article and Find Full Text PDF

Transforming the chemotherapy of human African trypanosomiasis.

Clin Microbiol Rev

January 2025

School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.

SUMMARYPrior to 2019, when the orally available drug fexinidazole began its clinical use, the treatment of human African trypanosomiasis (HAT) was complex and unsatisfactory for many reasons. Two sub-species of the parasite are responsible for HAT, namely the rhodesiense form found in East and Southern Africa and the gambiense form found in Central and West Africa. Diseases caused by both forms manifest in two stages: stage 1 before and stage 2 after central nervous system involvement.

View Article and Find Full Text PDF

Oligostyrylbenzene Derivatives with Antiparasitic and Antibacterial Activity as Potent G-Quadruplex Ligands.

Molecules

December 2024

Departamento de Bioquímica y Farmacología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, PTS Granada, Avenida del Conocimiento 17, 18016 Armilla, Spain.

G-quadruplexes (G4s) are non-canonical secondary structures that play a crucial role in the regulation of genetic expression. This study explores the interaction between G4s and a small family of oligostyrylbenzene (OSB) derivatives, characterized by tris(styryl)benzene and tetrastyrylbenzene backbones, functionalized with either trimethylammonium or 1-methylpyridinium groups. Initially identified as DNA ligands, these OSB derivatives have now been recognized as potent G4 binders, surpassing in binding affinity commercially available ligands such as pyridostatin and displaying good selectivity for G4s over duplex DNA.

View Article and Find Full Text PDF

AUK3 is required for faithful nuclear segregation in the bloodstream form of Trypanosoma brucei.

Mol Biochem Parasitol

December 2024

University of Glasgow, Centre for Parasitology, School of Infection and Immunity,  120 University Place, Sir Graeme Davies Building, Glasgow G12 8TA, United Kingdom. Electronic address:

Eukaryotic chromosomes segregate faithfully prior to nuclear division to ensure genome stability. If segregation becomes defective, the chromosome copy number of the cell may alter leading to aneuploidy and/or polyploidy, both common hallmarks of cancers. In eukaryotes, aurora kinases regulate chromosome segregation during mitosis and meiosis, but their functions in the divergent, single-celled eukaryotic pathogen Trypanosoma brucei are less understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!