X-ray absorption near the iron K edge (XANES) was used to investigate the characteristics of temperature-induced low-spin-to-high-spin change (SC) in metallo-supramolecular polyelectrolyte amphiphile complexes (PAC) containing FeN(6) octahedra attached to two or six amphiphilic molecules. Compared to the typical spin-crossover material Fe(phen)(2) (NCS)(2) XANES spectra of PAC show fingerprint features restricted to the near-edge region which mainly measures multiple scattering (MS) events. The changes of the XANES profiles during SC are thus attributed to the structure changes due to different MS path lengths. Our results can be interpreted by a uniaxial deformation of FeN(6) octahedra in PAC. This is in agreement with the prediction that SC is originated by a structural phase transition in the amphiphilic matrix of PAC, but in contrast to Fe(phen)(2) (NCS)(2), showing the typical spin crossover being associated with shortening of all the metal-ligand distances.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201000428DOI Listing

Publication Analysis

Top Keywords

temperature-induced low-spin-to-high-spin
8
low-spin-to-high-spin change
8
change metallo-supramolecular
8
fen6 octahedra
8
fephen2 ncs2
8
x-ray near-edge
4
near-edge absorption
4
absorption study
4
study temperature-induced
4
metallo-supramolecular assemblies
4

Similar Publications

X-ray absorption near the iron K edge (XANES) was used to investigate the characteristics of temperature-induced low-spin-to-high-spin change (SC) in metallo-supramolecular polyelectrolyte amphiphile complexes (PAC) containing FeN(6) octahedra attached to two or six amphiphilic molecules. Compared to the typical spin-crossover material Fe(phen)(2) (NCS)(2) XANES spectra of PAC show fingerprint features restricted to the near-edge region which mainly measures multiple scattering (MS) events. The changes of the XANES profiles during SC are thus attributed to the structure changes due to different MS path lengths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!