Activation of TREK currents by the neuroprotective agent riluzole in mouse sympathetic neurons.

J Neurosci

Department of Functional Biology and Biochemistry, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain.

Published: January 2011

Background K2P channels play a key role in stabilizing the resting membrane potential, thereby modulating cell excitability in the central and peripheral somatic nervous system. Whole-cell experiments revealed a riluzole-activated current (I(RIL)), transported by potassium, in mouse superior cervical ganglion (mSCG) neurons. The activation of this current by riluzole, linoleic acid, membrane stretch, and internal acidification, its open rectification and insensitivity to most classic potassium channel blockers, indicated that I(RIL) flows through channels of the TREK [two-pore domain weak inwardly rectifying K channel (TWIK)-related K channel] subfamily. Whole-ganglia and single-cell reverse transcription-PCR demonstrated the presence of TREK-1, TREK-2, and TRAAK (TWIK-related arachidonic acid-activated K(+) channel) mRNA, and the expression of these three proteins was confirmed by immunocytochemistry in mSCG neurons. I(RIL) was enhanced by zinc, inhibited by barium and fluoxetine, but unaffected by quinine and ruthenium red, strongly suggesting that it was carried through TREK-1/2 channels. Consistently, a channel with properties identical with the heterologously expressed TREK-2 was recorded in most (75%) cell-attached patches. These results provide the first evidence for the expression of K2P channels in the mammalian autonomic nervous system, and they extend the impact of these channels to the entire nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6623616PMC
http://dx.doi.org/10.1523/JNEUROSCI.2791-10.2011DOI Listing

Publication Analysis

Top Keywords

nervous system
12
k2p channels
8
mscg neurons
8
channels
5
activation trek
4
trek currents
4
currents neuroprotective
4
neuroprotective agent
4
agent riluzole
4
riluzole mouse
4

Similar Publications

Epilepsy is a serious neurological disease that impacts all facets of a patient's life, including their socioeconomic situation. The failure to identify underlying epileptic signatures in their early stages might result in severe harm to the central nervous system (CNS) and permanent adverse changes to some organs. Therefore, numerous antiepileptic drugs (AEDs are frequently used to control and treat the frequency of seizures.

View Article and Find Full Text PDF

Systemic Diseases in Patients with Congenital Aniridia: A Report from the Homburg Registry for Congenital Aniridia.

Ophthalmol Ther

January 2025

Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Homburg, Saar, Germany.

Introduction: Congenital aniridia is increasingly recognized as part of a complex syndrome with numerous ocular developmental anomalies and non-ocular systemic manifestations. This requires comprehensive care and treatment of affected patients. Our purpose was to analyze systemic diseases in patients with congenital aniridia within the Homburg Aniridia Registry.

View Article and Find Full Text PDF

Gastrointestinal lesions of eosinophilic granulomatosis with polyangiitis: a prediction model and clinical patterns.

Arthritis Res Ther

January 2025

Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, the Ministry of Education Key Laboratory, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China.

Objective: Severe gastrointestinal lesions are associated with a poor prognosis in eosinophilic granulomatosis with polyangiitis (EGPA). The goal of this study was to develop an effective predictive model for gastrointestinal lesions and to examine clinical patterns, associated factors, treatment, and outcomes of gastrointestinal lesions in EGPA.

Methods: We retrospectively enrolled 165 EGPA patients.

View Article and Find Full Text PDF

Habituation of the biological response to repeated psychosocial stress: a systematic review and meta-analysis.

Neurosci Biobehav Rev

January 2025

Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behaviour, Philipps University Marburg, Hans-Meerwein-Str. 6, 35032 Marburg, Germany. Electronic address:

Recurrent psychosocial stress poses a significant health challenge, prompting research into mechanisms of successful adaptation. Physiological habituation, defined as decreased reactivity to repeated stressors, is pivotal in protecting the organism from allostatic load. Here, we systematically review and meta-analyze data from studies investigating the capacity of central stress systems to habituate when repeatedly exposed to a standardized psychosocial stressor, the Trier Social Stress Test (k=47).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!