TMEM190, a small transmembrane protein containing the trefoil domain, was previously identified by our proteomic analysis of mouse sperm. Two structural features of TMEM190, 'trefoil domain' and 'small transmembrane protein', led us to hypothesize that this protein forms a protein-protein complex required during fertilization, and we characterized TMEM190 by biochemical, cytological, and genetic approaches. We showed in this study that the mouse Tmem190 gene exhibits testis-specific mRNA expression and that the encoded RNA is translated into a 19-kDa protein found in both testicular germ cells and cauda epididymal sperm. Treatment of the cell surface with proteinase K, subcellular fractionation, and immunofluorescence assay all revealed that mouse TMEM190 is an inner-acrosomal membrane protein of cauda epididymal sperm. During the acrosome reaction, TMEM190 partly relocated onto the surface of the equatorial segment, on which sperm-oocyte fusion occurs. Moreover, TMEM190 and IZUMO1, which is an immunoglobulin-like protein required for gamete fusion, co-localized in mouse sperm both before and after the acrosome reaction. However, immunoprecipitates of TMEM190 contained several sperm proteins, but did not include IZUMO1. These findings suggest that a mouse sperm protein complex(es) including TMEM190 plays an indirect role(s) in sperm-oocyte fusion. The role(s), if any, is probably dispensable since Tmem190-null male mice were normally fertile.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-10-0391DOI Listing

Publication Analysis

Top Keywords

mouse sperm
16
tmem190
10
sperm
8
tmem190 small
8
small transmembrane
8
transmembrane protein
8
protein trefoil
8
trefoil domain
8
sperm proteins
8
mouse tmem190
8

Similar Publications

CFAP65 is essential for C2a projection integrity in axonemes: implications for organ-specific ciliary dysfunction and infertility.

Cell Mol Life Sci

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.

Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants.

View Article and Find Full Text PDF

DIZE improved obesity and metabolic disturbances in DIO mice. An increase of sperm account and motility, along with improved morphology and increased male fertility was observed after DIZE treatment. Both serum and intratesticular testosterone levels showed an increase.

View Article and Find Full Text PDF

Objectives: Cisplatin (DDP) resistance remains a primary cause of chemotherapy failure and recurrence of non-small cell lung cancer (NSCLC). Abnormal high microsomal glutathione transferase 1 (MGST1) expression has been found in DDP-resistant NSCLC cells. This study aimed to explore the function and mechanism of MGST1 in DDP resistance of NSCLC cells.

View Article and Find Full Text PDF

Karyotype instability in the germline leads to infertility. Unlike the female germline, the male germline continuously produces fertile sperm throughout life. Here we present a molecular network responsible for maintaining karyotype stability in the male mouse germline.

View Article and Find Full Text PDF

In vitro sperm generation from immature mouse testicular tissue using plasma rich in growth factors.

Stem Cell Res Ther

January 2025

Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Background: Culture medium enriched with Knockout serum replacement (KSR) can produce in vitro mouse sperm, but it is inefficient, strain-specific and contains bovine products, which limits its use in the human clinic. The study aimed to optimize the culture medium for testicular tissue by using plasma rich in growth factors (PRGF) as a serum supplement, addressing the limitations of KSR.

Methods: Immature testicular tissues from NMRI mice were cultured for 14 days to identify the optimal PRGF concentration using histological analysis and tubular integrity scoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!