Background: Influenza A virus poses a continuous threat to global public health. Design of novel universal drugs and vaccine requires a careful analysis of different strains of Influenza A viral genome from diverse hosts and subtypes. We performed a systematic in silico analysis of Influenza A viral segments of all available Influenza A viral strains and subtypes and grouped them based on host, subtype, and years isolated, and through multiple sequence alignments we extrapolated conserved regions, motifs, and accessible regions for functional mapping and annotation.
Results: Across all species and strains 87 highly conserved regions (conservation percentage > = 90%) and 19 functional motifs (conservation percentage = 100%) were found in PB2, PB1, PA, NP, M, and NS segments. The conservation percentage of these segments ranged between 94-98% in human strains (the most conserved), 85-93% in swine strains (the most variable), and 91-94% in avian strains. The most conserved segment was different in each host (PB1 for human strains, NS for avian strains, and M for swine strains). Target accessibility prediction yielded 324 accessible regions, with a single stranded probability > 0.5, of which 78 coincided with conserved regions. Some of the interesting annotations in these regions included sites for protein-protein interactions, the RNA binding groove, and the proton ion channel.
Conclusions: The influenza virus has evolved to adapt to its host through variations in the GC content and conservation percentage of the conserved regions. Nineteen universal conserved functional motifs were discovered, of which some were accessible regions with interesting biological functions. These regions will serve as a foundation for universal drug targets as well as universal vaccine design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3036627 | PMC |
http://dx.doi.org/10.1186/1743-422X-8-44 | DOI Listing |
PNAS Nexus
January 2025
Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan.
We identified a 5-fluoro-benzothiazole-containing small molecule, TKB272, through fluorine-scanning of the benzothiazole moiety, which more potently inhibits the enzymatic activity of SARS-CoV-2's main protease (M) and more effectively blocks the infectivity and replication of all SARS-CoV-2 strains examined including Omicron variants such as SARS-CoV-2 and SARS-CoV-2 than two M inhibitors: nirmatrelvir and ensitrelvir. Notably, the administration of ritonavir-boosted nirmatrelvir and ensitrelvir causes drug-drug interactions warranting cautions due to their CYP3A4 inhibition, thereby limiting their clinical utility. When orally administered, TKB272 blocked SARS-CoV-2 replication without ritonavir in B6.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Faculty of Geography, Yunnan Normal University, Kunming, China.
Exposure to infected animals and their contaminated environments may be the primary cause of human infection with the H7N9 avian influenza virus. However, the transmission characteristics and specific role of various influencing factors in the spread of the epidemic are not clearly understood. Therefore, it is of great significance for scientific research and practical application to explore the influencing factors related to the epidemic.
View Article and Find Full Text PDFZoonotic transmission of avian influenza viruses into mammals is relatively rare due to anatomical differences in the respiratory tract between species. Recently, clade 2.3.
View Article and Find Full Text PDFVet World
November 2024
Department of Animal Biotechnology, Mahanakorn University of Technology, Bangkok, Thailand.
Background And Aim: Potassium peroxymonosulfate (PPMS) is a broad-spectrum disinfectant that oxidizes viral protein capsids. The effectiveness of PPMS in killing viruses depends on several factors, including its concentration, contact time, and present of organic materials. This study evaluated the efficacy of PPMS in an aqueous phase.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
Developing a broad-spectrum antiviral is imperative in light of the recent emergence of recurring viral infections. The critical role of host-virus attachment and membrane fusion during enveloped virus entry is a suitable target for developing broad-spectrum antivirals. A new class of flavonoid-based fusion inhibitors are designed to alter the membrane's physical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!