Background: Quaternary plant ecology in much of the world has historically relied on morphological identification of macro- and microfossils from sediments of small freshwater lakes. Here, we report new protocols that reliably yield DNA sequence data from Holocene plant macrofossils and bulk lake sediment used to infer ecological change. This will allow changes in census populations, estimated from fossils and associated sediment, to be directly associated with population genetic changes.

Results: We successfully sequenced DNA from 64 samples (out of 126) comprised of bulk sediment and seeds, leaf fragments, budscales, and samaras extracted from Holocene lake sediments in the western Great Lakes region of North America. Overall, DNA yields were low. However, we were able to reliably amplify samples with as few as 10 copies of a short cpDNA fragment with little detectable PCR inhibition. Our success rate was highest for sediments < 2000 years old, but we were able to successfully amplify DNA from samples up to 4600 years old. DNA sequences matched the taxonomic identity of the macrofossil from which they were extracted 79% of the time. Exceptions suggest that DNA molecules from surrounding nearby sediments may permeate or adhere to macrofossils in sediments.

Conclusions: An ability to extract ancient DNA from Holocene sediments potentially allows exciting new insights into the genetic consequences of long-term environmental change. The low DNA copy numbers we found in fossil material and the discovery of multiple sequence variants from single macrofossil extractions highlight the need for careful experimental and laboratory protocols. Further application of these protocols should lead to better understanding of the ecological and evolutionary consequences of environmental change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041685PMC
http://dx.doi.org/10.1186/1471-2148-11-30DOI Listing

Publication Analysis

Top Keywords

ancient dna
8
lake sediments
8
dna
8
dna samples
8
environmental change
8
sediments
6
dna lake
4
sediments bridging
4
bridging gap
4
gap paleoecology
4

Similar Publications

Long, identical haplotypes shared between pairs of individuals, known as identity-by-descent (IBD) segments, result from recently shared co-ancestry. Various methods have been developed to utilize IBD sharing for demographic inference in contemporary DNA data. Recent methodological advances have extended the screening for IBD segments to ancient DNA (aDNA) data, making demographic inference based on IBD also possible for aDNA.

View Article and Find Full Text PDF

Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood.

View Article and Find Full Text PDF

Mountains with complex terrain and steep environmental gradients are biodiversity hotspots such as the eastern Tibetan Plateau (TP). However, it is generally assumed that mountain terrain plays a secondary role in plant species assembly on a millennial time-scale compared to climate change. Here, we investigate plant richness and community changes during the last 18,000 years at two sites: Lake Naleng and Lake Ximen on the eastern TP with similar elevation and climatic conditions but contrasting terrain.

View Article and Find Full Text PDF

Dental plaque biofilms are the primary etiologic factor for various chronic oral infectious diseases. In recent years, dental plaque shows enormous potential to know about an individual microbiota. Various microbiome studies of oral cavity from different geographical locations reveals abundance of microbial species.

View Article and Find Full Text PDF

Objective: Community engagement is an increasingly important component of ancient DNA (aDNA) research, especially when it involves archeological individuals connected to contemporary descendants or other invested communities. However, effectively explaining methods to non-specialist audiences can be challenging due to the intricacies of aDNA laboratory work. To overcome this challenge, the Anson Street African Burial Ground (ASABG) Project employed a GoPro camera to visually document the process of aDNA extraction for use in community engagement and education events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!