In this article we present a long target droplet polymerase chain reaction (PCR) microsystem for the amplification of the 16S ribosomal RNA gene. It is used for detecting Gram-positive and Gram-negative pathogens at high-throughput and is optimised for downstream species identification. The miniaturised device consists of three heating plates for denaturation, annealing and extension arranged to form a triangular prism. Around this prism a fluoropolymeric tubing is coiled, which represents the reactor. The source DNA was thermally isolated from bacterial cells without any purification, which proved the robustness of the system. Long target sequences up to 1.3 kbp from Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa have successfully been amplified, which is crucial for the successive species classification with DNA microarrays at high accuracy. In addition to the kilobase amplicon, detection limits down to DNA concentrations equivalent to 10(2) bacterial cells per reaction were achieved, which qualifies the microfluidic device for clinical applications. PCR efficiency could be increased up to 2-fold and the total processing time was accelerated 3-fold in comparison to a conventional thermocycler. Besides this speed-up, the device operates in continuous mode with consecutive droplets, offering a maximal throughput of 80 samples per hour in a single reactor. Therefore we have overcome the trade-off between target length, sensitivity and throughput, existing in present literature. This qualifies the device for the application in species identification by PCR and microarray technology with high sample numbers. Moreover early diagnosis of infectious diseases can be implemented, allowing immediate species specific antibiotic treatment. Finally this can improve patient convalescence significantly.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-011-9514-xDOI Listing

Publication Analysis

Top Keywords

long target
12
target droplet
8
droplet polymerase
8
polymerase chain
8
chain reaction
8
microfluidic device
8
species identification
8
bacterial cells
8
device
5
reaction microfluidic
4

Similar Publications

Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g.

View Article and Find Full Text PDF

New and Emerging Biological Therapies for Myasthenia Gravis: A Focussed Review for Clinical Decision-Making.

BioDrugs

January 2025

Department of Neurology, Neuroscience Clinical Research Center (NCRC) and Integrated Myasthenia Gravis Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Charitéplatz 1, Germany.

Myasthenia gravis (MG) is a rare autoimmune disease characterised by exertion-induced muscle weakness that can lead to potentially life-threatening myasthenic crises. Detectable antibodies are directed against specific postsynaptic structures of the neuromuscular junction. MG is a chronic condition that can be improved through therapies, but to date, not cured.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.

Antioxid Redox Signal

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.

Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) exhibits a long latency period and has a significant geographical disparity in incidence, which underscores the need for models predicting the long-term absolute risk adaptable to regional disease burden.

Methods: 31,883 participants in a large-scale population-based screening trial (Hua County, China) were enrolled to develop the model. Severe dysplasia and above (SDA) identified at screening or follow-up were defined as the outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!