Introduction: Recent work has begun to elucidate the pathogenesis of intracranial aneurysms (IA) and has shown that many genes are involved in the risk for this condition. There has also been increasing research interest in the renin-angiotensin system (RAS) in the brain and it involvement in a range of cardiovascular and neurological disorders. The possibility that the RAS is implicated in the pathogenesis of IA merits further investigation. The aim of this article is to review the literature on the pathogenesis of IA and the pathophysiological significance of the brain RAS, and to identify directions for research into their association.

Methods And Results: A survey of the literature in these fields shows that although factors contributing to systemic hypertension predispose to IA, a large number of genes involved in endothelial cell adhesion, smooth muscle activity, extracellular matrix dynamics and the inflammatory and immune responses are also implicated. The brain RAS has a significant role in regulating blood pressure and in maintaining cerebrovascular autoregulation, but angiotensin II receptors are also involved in the maintenance of endothelial cell and vascular smooth muscle function and in the inflammatory response in the brain.

Conclusions: There is strong, albeit largely circumstantial, evidence in the literature for a relationship between the brain RAS and the formation of IA. Research on the association between polymorphisms in RAS-related genes and the incidence of unruptured and ruptured IA is indicated.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1470320310387845DOI Listing

Publication Analysis

Top Keywords

brain ras
12
pathogenesis intracranial
8
intracranial aneurysms
8
genes involved
8
endothelial cell
8
smooth muscle
8
ras
5
role renin--angiotensin
4
renin--angiotensin system
4
pathogenesis
4

Similar Publications

The ancestral architecture of the immune system in simplest animals.

Front Immunol

January 2025

Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.

View Article and Find Full Text PDF

Environmental endocrine disruptor chemicals (EDCs) have raised significant concerns due to their potential adverse effects on human health, particularly on the central nervous system (CNS). This study provides a comparative analysis of the effects of 17-alpha ethinyl estradiol (EE2) and diethyl phthalate (DEP) on neuronal cell proliferation and neurotoxicity. Using differentiated SH-SY5Y human neuronal cells, we evaluated cell viability, microRNA (miRNA) regulation, and RNA expression following exposure to subtoxic concentrations of EE2 and DEP.

View Article and Find Full Text PDF

Glioblastoma is the most frequent and malignant primary brain tumor. Although the survival is generally dismal for glioblastoma patients, risk stratification and the identification of high-risk subgroups is important for prompt and aggressive management. The G1-G7 molecular subgroup classification based on the MAPK pathway activation has offered for the first time a non-redundant, all-inclusive classification of adult glioblastoma.

View Article and Find Full Text PDF

Recently, RIT1 has been implicated in a range of neurological disorders; however, its precise function in glioma pathogenesis is not yet well-defined. This study employed quantitative reverse transcription PCR (qRT-PCR), Western blotting (WB), immunohistochemistry (IHC) and additional methodologies to assess RIT1 expression levels in glioma tissues. Furthermore, the study investigated its influence on glioma progression through a series of functional experiments.

View Article and Find Full Text PDF

Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for the formation of somatomotor networks that promote SMI-mediated perception.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!