Temperature dependence of resonance Raman spectra of carotenoids.

Spectrochim Acta A Mol Biomol Spectrosc

Sofia University, Faculty of Physics, Department of Condensed Matter Physics, Sofia, Bulgaria.

Published: April 2011

To understand the mechanism of the photoprotective and antioxidative functions of carotenoids, it is essential to have a profound knowledge of their excited electronic and vibronic states. In the present study we investigate the most powerful antioxidants: β-carotene and lutein by means of resonance Raman spectroscopy. The aim was to study in detail their Raman spectra in solution at room temperature and their changes as a function of temperature. To measure the spectra in their natural environment pyridine has been used as a solvent. It has been chosen because of its polarizability (n=1.5092) which is close to that of membrane lipids and proteins. The temperature dependence of the most intensive ν(1) band in the range from 77 K to 295 K at 514.5 nm excitation has been obtained. It was found that in pyridine the CC stretching frequency, its intensity, line shape, and line width are very sensitive to the temperature (the sensitivity being different for the two studied carotenoids). The observed linear temperature dependence of the CC stretching frequency is explained by a mechanism involving changes of the vibronic coupling and the extent of π-electron delocalization. The different behavior of the temperature-induced broadening of the ν(1) band and its intensity for the two studied carotenoids can be associated with the different nature of their solid matrices: glassy for β-carotene and crystalline-like for lutein, owing to their different chemical structures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2010.12.071DOI Listing

Publication Analysis

Top Keywords

temperature dependence
12
resonance raman
8
raman spectra
8
ν1 band
8
stretching frequency
8
studied carotenoids
8
temperature
6
dependence resonance
4
carotenoids
4
spectra carotenoids
4

Similar Publications

Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.

View Article and Find Full Text PDF

Temperature-Dependent Water Oxidation Kinetics: Implications and Insights.

ACS Cent Sci

January 2025

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.

As a vital process for solar fuel synthesis, water oxidation remains a challenging reaction to perform using durable and cost-effective systems. Despite decades of intense research, our understanding of the detailed processes involved is still limited, particularly under photochemical conditions. Recent research has shown that the overall kinetics of water oxidation by a molecular dyad depends on the coordination between photocharge generation and the subsequent chemical steps.

View Article and Find Full Text PDF

Vegetation productivity and ecosystem carbon sink capacity are significantly influenced by seasonal weather patterns. The time lags between changes in these patterns and ecosystem (including vegetation) responses is a critical aspect in vegetation-climate and ecosystem-climate interactions. These lags can vary considerably due to the spatial heterogeneity of vegetation and ecosystems.

View Article and Find Full Text PDF

This work investigates the solid-state reaction between iridium and zirconium carbide, resulting in the formation of carbon and ZrIr-an intermetallic compound of great interest for modern high-temperature materials science. We have found a transition of kinetic regimes in this reaction: from linear kinetics (when the chemical reaction is a limiting stage) at 1500 and 1550 °C to 'non-parabolic kinetics' at 1600 °C. Non-parabolic kinetics is characterized by the thickness of the product layer being proportional to a power of time less than 1/2.

View Article and Find Full Text PDF

Weak Antilocalization and Negative Magnetoresistance of the Gate-Tunable PbTe Thin Films.

J Phys Chem Lett

January 2025

Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.

We have systematically studied the electromagnetic transport properties of PbTe thin films under gate voltage modulation. The system demonstrates pronounced electron-electron interactions exclusively within the gate voltage range where only hole carriers are present. Furthermore, the Berry phase is utilized to qualitatively elucidate the transition between weak antilocalization (WAL) and weak localization (WL) through the regulation of gate voltage and temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!