Thymidylate synthase gene polymorphisms and markers of DNA methylation capacity.

Mol Genet Metab

Department of Community Health and Epidemiology, Queen's University, Kingston, Ontario, K7L3N6, Canada.

Published: April 2011

Background: DNA methylation plays a critical role in gene regulation and has been implicated in the etiology of chronic disease including atherosclerosis, neural degeneration and cancer. One-carbon metabolism serves two critically important functions: one concerning the production of purines and thymidine for DNA synthesis and the other related to the provision of methyl groups through the metabolism of methionine. Critical intermediates of methionine metabolism relevant to DNA methylation include S-adenosylmethionine (SAM), a universal methyl donor, and S-adenosylhomocysteine (SAH), a potent inhibitor of most methylation reactions. Thymidine synthesis, catalyzed by the crucial enzyme thymidylate synthase (TS), competes with methionine metabolism for a common substrate. Three functional polymorphisms in the TS gene have been identified including: (i) the thymidylate synthase enhancer region (TSER) tandem repeat polymorphism and (ii) the G to C single nucleotide polymorphism (G/C SNP) both of which occur in the 5'untranslated region (UTR) of the TS gene; and (iii) the 6-bp deletion at base pair 1494 (TS1494del6) located in the 3'UTR.

Purpose: The purpose of this research was to investigate the relationship between TS polymorphisms and concentrations of SAM and SAH, markers of DNA methylation capacity.

Methods: The study population consisted of 395 healthy male and female volunteers from Kingston, Ontario and Halifax, Nova Scotia, Canada between 2006 and 2008. The effect of each TS polymorphism on SAM and SAH concentrations was investigated, and further analyses were conducted on categorization of polymorphisms based on 5' or 3'UTR. The combined effect of TS polymorphisms on SAM and SAH concentrations was also investigated, in addition to interactions between polymorphisms in TS and MTHFR 677C>T and interactions between TS polymorphisms and serum folate and vitamin B(12) status.

Results: No associations were observed between TS polymorphisms and concentrations of SAM and SAH. Analysis of interaction between TS and MTHFR polymorphisms on SAH levels revealed a significant interaction with TS 3'polymorphism and MTHFR C677T (p=0.03). As well, interactions between TS 3'polymorphism and serum folate (p=0.03) and the combined effect of TS polymorphisms and serum folate on SAH levels (p=0.04) were found.

Conclusions: The findings of this research provide evidence that SAH, a marker of methylation capacity, is influenced by genetic and environmental factors and their interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgme.2010.12.015DOI Listing

Publication Analysis

Top Keywords

dna methylation
16
sam sah
16
thymidylate synthase
12
serum folate
12
polymorphisms
10
markers dna
8
methylation capacity
8
methionine metabolism
8
sah
8
polymorphisms concentrations
8

Similar Publications

Clear cell renal cell carcinoma (ccRCC) is a highly malignant tumor characterized by a significant propensity for recurrence and metastasis. DNA methylation has emerged as a critical epigenetic mechanism with substantial utility in cancer diagnosis. In this study, multi-omics data were utilized to investigate the target genes regulated by the transcription factor MYC-associated zinc finger protein (MAZ) in ccRCC, leading to the identification of thymidine phosphorylase (TYMP) as a gene with notably elevated expression in ccRCC.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an age-related chronic inflammatory disease which may include accelerated biological ageing processes in its pathogenesis. To determine if increased biological age is associated with risk of RA and/or is present once disease is established. We used DNA methylation to compare biological age (epigenetic age) of immune cells in adults at risk of RA and those with confirmed RA, including twins discordant for RA.

View Article and Find Full Text PDF

Neural tube defects (NTDs) are malformations of the central nervous system that represent the second most common cause of congenital morbidity and mortality, following cardiovascular abnormalities. Maternal nutrition, particularly folic acid, a B vitamin, is crucial in the etiology of NTDs. FA plays a key role in DNA methylation, synthesis, and repair, acting as a cofactor in one-carbon transfer reactions essential for neural tube development.

View Article and Find Full Text PDF

Background/objectives: This study builds on previous findings from mouse models, which showed that maternal overnutrition induced by a high-fat diet (HFD) promotes metabolic-associated fatty liver disease (MAFLD) in offspring, linked to global DNA hypermethylation. We explored whether epigenetic modulation with 5-Aza-CdR, a DNA methylation inhibitor, could prevent MAFLD in offspring exposed to maternal overnutrition.

Methods: The offspring mice from dams of maternal overnutrition were fed either a chow diet or a high-fat diet (HFD) for 10 weeks.

View Article and Find Full Text PDF

Background And Objectives: Depression often results in premature aging, which increases the risk of other chronic diseases, but very few studies have analyzed the association between epigenetic biomarkers of aging and depressive symptoms. Similarly, limited research has examined the joint effects of adherence to the Mediterranean diet (MedDiet) and chronotype on depressive symptoms, accounting for sex differences. Therefore, these are the objectives of our investigation in a Mediterranean population at high cardiovascular risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!