A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Decoupling of the catalytic and transport activities of complex I from Rhodothermus marinus by sodium/proton antiporter inhibitor. | LitMetric

Decoupling of the catalytic and transport activities of complex I from Rhodothermus marinus by sodium/proton antiporter inhibitor.

ACS Chem Biol

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal.

Published: May 2011

The energy transduction by complex I from Rhodothermusmarinus was addressed by studying the influence of 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) on the activities of this enzyme. EIPA is an inhibitor of both Na(+)/H(+) antiporter and complex I NADH:quinone oxidoreductase activity. We performed studies of NADH:quinone oxidoreductase and H(+) and Na(+) translocation activities of complex I from R. marinus at different concentrations of EIPA, using inside-out membrane vesicles. We observed that the oxidoreductase activity and both H(+) and Na(+) transports are inhibited by EIPA. Most interestingly, the catalytic and the two transport activities showed different inhibition profiles. The transports are inhibited at concentrations of EIPA at which the catalytic activity is not affected. In this way the catalytic and transport activities were decoupled. Moreover, the inhibition of the catalytic activity was not influenced by the presence of Na(+), whereas the transport of H(+) showed different inhibition behaviors in the presence and absence of Na(+). Taken together our observations indicate that complex I from R. marinus performs energy transduction by two different processes: proton pumping and Na(+)/H(+) antiporting. The decoupling of the catalytic and transport activities suggests the involvement of an indirect coupling mechanism, possibly through conformational changes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/cb100380yDOI Listing

Publication Analysis

Top Keywords

catalytic transport
16
transport activities
16
decoupling catalytic
8
activities complex
8
energy transduction
8
nadhquinone oxidoreductase
8
oxidoreductase activity
8
complex marinus
8
concentrations eipa
8
transports inhibited
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!