A detailed nuclear magnetic resonance (NMR) study was carried out on a series of paramagnetic, tetrahedrally coordinated nickel(II) dihalide complexes featuring chelating guanidine ligands. A complete assignment of the NMR signals for all complexes was achieved by sophisticated NMR experiments, including correlation spectra. The effects of halide exchange, as well as the variation in the guanidine-metal bite angles on the paramagnetic shifts, were assessed. The paramagnetic shift was derived with the aid of the diamagnetic NMR spectra of the analogous Zn complexes, which were synthesized for this purpose. The experimentally derived paramagnetic shift was then compared with the values obtained from quantum chemical (DFT) calculations. Furthermore, variable-temperature NMR studies were recorded for all complexes. It is demonstrated that NMR spectroscopy can be applied to evaluate the rate constants of fast fluxional processes within paramagnetic and catalytically active metal complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic102420x | DOI Listing |
Magn Reson Med
January 2025
Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada.
Purpose: Brain temperature is tightly regulated and reflects a balance between cerebral metabolic heat production and heat transfer between the brain, blood, and external environment. Blood temperature and flow are critical to the regulation of brain temperature. Current methods for measuring in vivo brain and blood temperature are invasive and impractical for use in small animals.
View Article and Find Full Text PDFNanoscale
January 2025
Technical University of Darmstadt, Eduard-Zintl-Institute, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany.
The magnetic behavior of endohedrally transition-metal-doped tetrel clusters SnTM (TM = Cr, Mn, Fe) was investigated using a combined experimental and theoretical approach. Based on an improved experimental setup, the magnetic deflection was measured over a wide temperature range of = 16-240 K. From a Curie analysis of the experimentally observed single-sided shift at high nozzle temperatures, the spin multiplicities and -factors were determined.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Process Equipment, College of Energy Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, Zhejiang, China.
Further miniaturization of magnetic nanomaterials is intrinsically accompanied by a reduction in spin ordered domains, resulting in size-dependent magnetic behaviors. Consequently, a longstanding roadblock in the advancement of nanodevices based on magnetic nanomaterials is the absence of a method to beat the size-dependent limit in nanomagnetism. Here, we discover and exploit a spin-lattice coupling effect in three-dimensional freestanding magnetic nanoparticles to beat the size-dependent limit for the first time.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Departmet of Physics(MMV), Banaras Hindu University, Varanasi, Varanasi, Uttar Pradesh, 221005, INDIA.
We report a detailed experimental study of the structural, magnetic and electrical properties of La and Ru doped (Sr1-x Lax)2Ir1-xRuxO4 (x= 0.05, 0.15).
View Article and Find Full Text PDFSubcell Biochem
December 2024
IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.
Nuclear magnetic resonance (NMR) is a spectroscopic technique based on the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits, or to provide information about other macromolecular partners with which such proteins interact. NMR has been instrumental in describing conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!