Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We developed a gold nanoparticle (Au NP)-based fluorescence sensor for the detection of mercury ions in aqueous solutions. After introducing bovine serum albumin (BSA) to a solution of rhodamine 6G (R6G) and 3-mercaptopropionic acid (MPA)-modified Au NPs, the as-prepared BSA@R6G/MPA-Au NP probe could sense mercury ions under high salt conditions. This probe operated through a mechanism involving mercury species depositing onto the surfaces of the Au NPs and releasing R6G molecules into the solution, causing the fluorescence intensity of the BSA@R6G/MPA-AuNP solution to increase. We improved the selectivity of the nanosensor by adding masking agents (ethylenediamine tetraacetic acid (EDTA) and Na2S) or tellurium nanowires (Te NWs) to the sample solutions. In the presence of 1.0 mM EDTA and 10 μM Na2S, the selectivities of this system toward phenylmercury (PhHg(I)) over other metal ions and mercury species were greater than 200- and 10-fold, respectively. The limit of detection (LOD), at a signal-to-noise ratio of 3, for PhHg(I) was 20 nM. Selective detection of the total organic mercury (methylmercury (MeHg(I)), ethylmercury (EtHg(I)), and PhHg(I)) was possible when using the BSA@R6G/MPA-Au NPs in conjunction with Te NWs (3.0 nM). The selectivity of this nanosensor system for the total organic mercury over Hg(II) was remarkably high (100-fold) with an LOD for organic mercury of 10 nM. We also demonstrated the feasibility of using the developed nanosensor for rapid determination of mercury species in river, sea, and tap water as well as in fish samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es103369d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!