AI Article Synopsis

  • The study discusses the expulsion of leaving groups like carboxylate, thiolate, and phenolate from benzothiophene carboxanilides through zwitterionic intermediates.
  • This process occurs during a photochemical electrocyclic ring closure when the molecules are in their triplet excited state.
  • The chemical yields are typically over 90%, but the quantum yields depend on the basicity of the leaving group that is released.

Article Abstract

Leaving groups such as carboxylate, thiolate, and phenolate are expelled via zwitterionic intermediates produced upon photochemical electrocyclic ring closure of benzothiophene carboxanilides in the triplet excited state. Chemical yields generally exceed 90%, while quantum yields vary with basicity of the released leaving group.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol102932yDOI Listing

Publication Analysis

Top Keywords

zwitterionic intermediates
8
electrocyclic ring
8
ring closure
8
closure benzothiophene
8
benzothiophene carboxanilides
8
photochemical eliminations
4
eliminations involving
4
involving zwitterionic
4
intermediates generated
4
generated electrocyclic
4

Similar Publications

Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme.

View Article and Find Full Text PDF

Theoretical Studies on the Reaction Mechanism for the Cycloaddition of Zwitterionic π-Allenyl Palladium Species: Substrate-Controlled Isomerization.

Molecules

December 2024

State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

Zwitterionic π-allenyl palladium species are newly developed intermediates. A substrate-controlled step existed in the cycloaddition of zwitterionic π-allenyl palladium species with tropsulfimides or tropones. With the assistance of previously experimental studies, zwitterionic allenyl/propargyl palladium species was provenly found by HRMS.

View Article and Find Full Text PDF

Dynamic Kinetic Activation of Aziridines Enables Radical-Polar Crossover (4 + 3) Cycloaddition with 1,3-Dienes.

J Am Chem Soc

January 2025

State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

The cycloaddition of aziridines with unsaturated compounds is a valuable method for synthesizing nitrogen heterocycles. However, this process is predominantly substrate-controlled, posing significant challenges in regulating the regioselectivity of the C-N bond cleavage. In this study, we report a nickel-catalyzed dynamic kinetic activation strategy that enables catalyst-controlled activation of aziridines.

View Article and Find Full Text PDF

Hydration and Biodistribution of Zwitterionic Dendrimers Conjugating a Sulfobetaine Monomer and Polymers.

Langmuir

January 2025

Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.

Zwitterionic polymers exhibit strong hydration, high biocompatibility, and antifouling properties. Dendrimers are regularly branched polymers, which are used in the drug delivery system (DDS). In this study, we synthesized zwitterionic monomer- and polymer-conjugated dendrimers as a biocompatible nanoparticle to investigate the relation between the hydration property and biodistribution.

View Article and Find Full Text PDF

Isothiourea-catalyzed multicomponent cascade reactions are challenging due to the existence of competitive side reactions between multiple reaction partners and intermediates. Herein, we report a practical and efficient protocol for the stereoselective divergent synthesis of pyrazolone-derived β-amino acid esters and β-lactams by isothiourea catalysis. Two distinct reaction pathways are identified, which are controlled by esterification or lactamization of the zwitterionic intermediate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!